The effect of carbon nanotube aspect ratio (AR) on the percolation characteristics of their polymer composites was investigated by melt blending the multi-wall carbon nanotubes (MWCNTs) with different AR with a thermoplastic elastomer. Previously, most studies reported the effect of aspect ratio of MWCNTs only in the context of achieving the maximum electrical conductivity at lower percolation thresholds in the polymer composites. In this study, our results indicate that aspect ratio can also influence other percolation properties such as the pre-percolation conductivity, percolation conductivity and post-percolation conductivity, shape of the percolation curve, and the width of the insulator-conductor transition. We have established that AR can be used to tailor the percolation curves from sharp to quasi-linear ones, which can help us fabricate the percolative composites with stable electrical properties. Experimental results suggested that the mathematically calculated nominal AR of the MWCNTs was an unclear parameter to correlate with the percolation characteristics of the composites. Instead, an approach taking into consideration the nominal length (l) and the diameter (d) of the MWCNTs individually rather than as a combined AR (l/d) parameter gave a better explanation of the relation between MWCNT dimensions and percolation characteristics.

1.
S.
Kumar
,
B.
Lively
,
L. L.
Sun
,
B.
Li
, and
W. H.
Zhong
,
Carbon
48
,
3846
(
2010
).
2.
N.
Li
,
Y.
Huang
,
F.
Du
,
X.
He
,
X.
Lin
,
H.
Gao
,
Y.
Ma
,
F.
Li
,
Y.
Chen
, and
P. C.
Eklund
,
Nano Lett.
6
,
1141
(
2006
).
3.
B. J.
Landi
,
R. P.
Raffaelle
,
M. J.
Heben
,
J. L.
Alleman
,
W.
VanDerveer
, and
T.
Gennett
,
Nano Lett.
2
,
1329
(
2002
).
4.
C.
Peng
,
S.
Zhang
,
D.
Jewell
, and
G. Z.
Chen
,
Prog. Nat. Sci.
18
,
777
(
2008
).
5.
N.
Hu
,
H.
Fukunaga
,
S.
Atobe
,
Y.
Liu
, and
J.
Li
,
Sensors
11
,
10691
(
2011
).
6.
I.
Alexandrou
,
E.
Kymakis
, and
G.
Amaratunga
,
Appl. Phys. Lett.
80
,
1435
(
2002
).
7.
N. J. S.
Sohi
,
S.
Bhadra
, and
D.
Khastgir
,
Carbon
49
,
1349
(
2011
).
8.
S. P.
Bao
,
G. D.
Liang
, and
S. C.
Tjong
,
Carbon
49
,
1758
(
2011
).
9.
M. H.
Al-Saleh
and
U.
Sundararaj
,
Carbon
47
,
2
(
2009
).
10.
Y. P.
Mamunya
,
V.
Davydenko
,
P.
Pissis
, and
E.
Lebedev
,
Eur. Polym. J.
38
,
1887
(
2002
).
11.
B. J. P.
Adohi
,
A.
Mdarhri
,
C.
Prunier
,
B.
Haidar
, and
C.
Brosseau
,
J. Appl. Phys.
108
,
074108
(
2010
).
12.
J.
Sandler
,
J.
Kirk
,
I.
Kinloch
,
M.
Shaffer
, and
A.
Windle
,
Polymer
44
,
5893
(
2003
).
13.
E.
Logakis
,
P.
Pissis
,
D.
Pospiech
,
A.
Korwitz
,
B.
Krause
,
U.
Reuter
, and
P.
Pötschke
,
Eur. Polym. J.
46
,
928
(
2010
).
14.
C.-C.
Chu
,
K. L.
White
,
P.
Liu
,
X.
Zhang
, and
H.-J.
Sue
,
Carbon
50
,
4711
(
2012
).
15.
A.
Mdarhri
,
F.
Carmona
,
C.
Brosseau
, and
P.
Delhaes
,
J. Appl. Phys.
103
,
054303
(
2008
).
16.
Y.
Bin
,
C.
Xu
,
D.
Zhu
, and
M.
Matsuo
,
Carbon
40
,
195
(
2002
).
17.
H. P.
Xu
,
Z. M.
Dang
,
M. J.
Jiang
,
S. H.
Yao
, and
J.
Bai
,
J. Mater. Chem.
18
,
229
(
2008
).
18.
K.
Shehzad
,
Z.-M.
Dang
,
M. N.
Ahmad
,
R. U. R.
Sagar
,
S.
Butt
,
M. U.
Farooq
, and
T.-B.
Wang
,
Carbon
54
,
105
(
2013
).
19.
M. J.
Jiang
,
Z. M.
Dang
, and
H. P.
Xu
,
Appl. Phys. Lett.
89
,
182902
(
2006
).
20.
Z. M.
Dang
,
M. J.
Jiang
,
D.
Xie
,
S. H.
Yao
,
L. Q.
Zhang
, and
J.
Bai
,
J. Appl. Phys.
104
,
024114
(
2008
).
21.
K.
Shehzad
,
J.-W.
Zha
,
Z.-F.
Zhang
,
J.-K.
Yuan
, and
Z.-M.
Dang
,
J. Adv. Phys.
2
,
70
(
2013
).
22.
J.-W.
Zha
,
K.
Shehzad
,
W.-K.
Li
, and
Z.-M.
Dang
,
J. Appl. Phys.
113
,
014102
(
2013
).
23.
Z.-M.
Dang
,
K.
Shehzad
,
J.-W.
Zha
,
T.
Hussain
,
N.
Jun
, and
J.
Bai
,
Jpn. J. Appl. Phys.
50
,
080214
(
2011
).
24.
Y. S.
Song
and
J. R.
Youn
,
Carbon
43
,
1378
(
2005
).
25.
W.
Bauhofer
and
J. Z.
Kovacs
,
Compos. Sci. Technol.
69
,
1486
(
2009
).
26.
F.
Du
,
J. E.
Fischer
, and
K. I.
Winey
,
Phys. Rev. B
72
,
121404
(
2005
).
27.
F.
Qin
and
C.
Brosseau
,
J. Appl. Phys.
111
,
061301
(
2012
).
28.
C.
Martin
,
J.
Sandler
,
M.
Shaffer
,
M. K.
Schwarz
,
W.
Bauhofer
,
K.
Schulte
, and
A.
Windle
,
Compos. Sci. Technol.
64
,
2309
(
2004
).
29.
A. V.
Kyrylyuk
,
M. C.
Hermant
,
T.
Schilling
,
B.
Klumperman
,
C. E.
Koning
, and
P.
van der Schoot
,
Nat. Nanotechnol.
6
,
364
(
2011
).
30.
K. S.
Park
and
J. R.
Youn
,
Carbon
50
,
2322
(
2012
).
31.
W.
Li
,
J.
Yuan
,
Y.
Lin
,
S.
Yao
,
Z.
Ren
,
H.
Wang
,
M.
Wang
, and
J.
Bai
,
Carbon
51
,
355
(
2013
).
32.
A.
Allaoui
,
S. V.
Hoa
,
P.
Evesque
, and
J.
Bai
,
Scr. Mater.
61
,
628
(
2009
).
33.
V.
Myroshnychenko
and
C.
Brosseau
,
J. Appl. Phys.
103
,
084112
(
2008
).
34.
A.
Bug
,
S.
Safran
,
G. S.
Grest
, and
I.
Webman
,
Phys. Rev. Lett.
55
,
1896
(
1985
).
35.
F.
Carmona
,
F.
Barreau
,
P.
Delhaes
, and
R.
Canet
,
J. Phys., Lett.
41
,
531
(
1980
).
36.
L.
Berhan
and
A.
Sastry
,
Phys. Rev. E
75
,
041121
(
2007
).
37.
L.
Berhan
and
A.
Sastry
,
Phys. Rev. E
75
,
041120
(
2007
).
38.
S.-H.
Yao
,
Z.-M.
Dang
,
M.-J.
Jiang
,
H.-P.
Xu
, and
J.
Bai
,
Appl. Phys. Lett.
91
,
212901
(
2007
).
39.
Y. J.
Kim
,
T. S.
Shin
,
H. D.
Choi
,
J. H.
Kwon
,
Y.-C.
Chung
, and
H. G.
Yoon
,
Carbon
43
,
23
(
2005
).
40.
J.
Li
,
P. C.
Ma
,
W. S.
Chow
,
C. K.
To
,
B. Z.
Tang
, and
J. K.
Kim
,
Adv. Funct. Mater.
17
,
3207
(
2007
).
41.
Z.
Xu
,
Y.
Zhang
,
Z.
Wang
,
N.
Sun
, and
H.
Li
,
ACS Appl. Mater. Interfaces
3
,
4858
(
2011
).
42.
S.
Kirkpatrick
,
Rev. Mod. Phys.
45
,
574
(
1973
).
43.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
CRC
,
1994
).
44.
D.
Toker
,
D.
Azulay
,
N.
Shimoni
,
I.
Balberg
, and
O.
Millo
,
Phys. Rev. B
68
,
041403
(
2003
).
45.
46.
Z. M.
Dang
,
J. K.
Yuan
,
J. W.
Zha
,
T.
Zhou
,
S. T.
Li
, and
G. H.
Hu
,
Prog. Mater. Sci.
57
,
660
(
2012
).
You do not currently have access to this content.