We present the density functional theory calculations of the binding energy of the Phosphorus (P) donor electrons in extremely downscaled single P-doped Silicon (Si) nanorods. In past studies, the binding energy of donor electrons was evaluated for the Si nanostructures as the difference between the ionization energy for the single P-doped Si nanostructures and the electron affinity for the un-doped Si nanostructures. This definition does not take into account the strong interaction of donor electron states and Si electron states explicitly at the conductive states and results in a monotonous increase in the binding energy by reducing the nanostructure's dimensions. In this paper, we introduce a new approach to evaluate the binding energy of donor electrons by combining the projected density of states (PDOS) analysis and three-dimensional analysis of associated electron wavefunctions. This enables us to clarify a gradual change of the spatial distribution of the 3D electron wavefunctions (3DWFs) from the donor electron ground state, which is fully localized around the P donor site to the first conductive state, which spreads over the outer Si nanorods contributing to current conduction. We found that the energy of the first conductive state is capped near the top of the atomistic effective potential at the donor site with respect to the surrounding Si atoms in nanorods smaller than about 27 a0. This results in the binding energy of approximately 1.5 eV, which is virtually independent on the nanorod's dimensions. This fact signifies a good tolerance of the binding energy, which governs the operating temperature of the single dopant-based transistors in practice. We also conducted the computationally heavy transmission calculations of the single P-doped Si nanorods connected to the source and drain electrodes. The calculated transmission spectra are discussed in comparison with the atomistic effective potential distributions and the PDOS-3DWFs method.

1.
P. M.
Koenraad
and
M. E.
Flatt
,
Nature Mater.
10
,
91–100
(
2011
).
2.
M.
Fuechsle
 et al,
Nature Nanotechnol.
7
,
242–246
(
2012
).
3.
G. P.
Lansbergen
 et al,
Nature Phys.
4
,
656
661
(
2008
).
4.
S.
Markov
,
B.
Cheng
, and
A.
Asenov
,
IEEE Electron Device Lett.
3
(
3
),
315
317
(
2012
).
5.
P.
Andrei
and
I.
Mayergoyz
,
Solid-State Electron.
47
,
2055
2061
(
2003
).
6.
T.
Ohtou
,
N.
Sugii
, and
T.
Hiramoto
,
IEEE Electron Device Lett.
28
(
3
),
740
742
(
2007
).
7.
Y.
Yasuda
,
M.
Takamiya
, and
T.
Hiramoto
,
IEEE Trans. Electron Devices
47
(
10
),
1838
1842
(
2000
).
8.
A.
Asenov
,
IEEE Trans. Electron Devices
45
(
12
),
2505
2513
(
1998
).
9.
A.
Asenov
and
S.
Saini
,
IEEE Trans. Electron Devices
46
(
8
),
1718
1724
(
1999
).
10.
H.
Sellier
 et al,
Phys. Rev. Lett.
97
,
206805
(
2006
).
11.
D.
Moraru
 et al,
Nanoscale Res. Lett.
6
,
479
(
2011
).
12.
E.
Hamid
 et al,
Phys. Rev. B
87
,
085420
(
2013
).
13.
Y. M.
Niquet
,
C.
Delerue
,
G.
Allan
, and
M.
Lannoo
,
Phys. Rev. B
62
(
8
),
5109
(
2000
).
14.
D. V.
Melnikov
and
J. R.
Chelikowsky
,
Phys. Rev. Lett.
92
(
4
),
046802
(
2004
).
15.
M.
Diarra
,
Y.
Niquet
,
C.
Delerue
, and
G.
Allan
,
Phys. Rev. B
75
,
045301
(
2007
).
16.
R.
Rurali
,
B.
Aradi
,
T.
Frauenheim
, and
A.
Gali
,
Phys. Rev. B
79
,
115303
(
2009
).
17.
G.
Cantele
 et al,
Phys. Rev. B
72
,
113303
(
2005
).
18.
C. R.
Leao
,
A.
Fazzio
, and
A. J. R. Da
Silva
,
Nano Lett.
8
(
7
),
1866
1871
(
2008
).
19.
T. L.
Chan
,
M. L.
Tiago
,
E.
Kaxiras
, and
J. R.
Chelikowsky
,
Nano Lett.
8
(
2
),
596
600
(
2008
).
20.
Z.
Zhou
,
M. L.
Steigerwald
,
R. A.
Friesner
, and
L.
Brus
,
Phys. Rev. B
71
,
245308
(
2005
).
21.
D. V.
Melnikov
and
J. R.
Chelikowsky
,
Phys. Rev. B
69
,
113305
(
2004
).
22.
See http://www.openmx-square.org/ for more detail of the computational software used in this research.
23.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
);
W.
Kohn
and
L. J.
Sham
,
>Phys. Rev.
140
,
A1133
(
1965
).
24.
G. B.
Bachelet
,
D. R.
Hamann
, and
M.
Schluter
,
Phys. Rev. B
26
,
4199
(
1982
).
25.
N.
Troullier
and
J. L.
Martine
,
Phys. Rev. B
43
,
1993
(
1991
).
26.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
27.
P. E.
Blochl
,
Phys. Rev. B
41
,
5414
(
1990
).
28.
I.
Morrison
,
D. M.
Bylander
, and
L.
Kleinman
,
Phys. Rev. B
47
,
6728
(
1993
).
29.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
69
,
195113
(
2004
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
31.
T.
Ozaki
,
K.
Nishio
, and
H.
Kino
,
Phys. Rev.
81
,
035116
(
2010
).
32.
V. A.
Belyakov
and
V. A.
Burdov
,
Phys. Lett. A
367
,
128
134
(
2007
).
33.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
72
,
045121
(
2005
).
34.
P.
Parida
,
E. A.
Basheera
, and
S. K.
Pati
,
J. Mater. Chem.
22
,
14916
14924
(
2012
).
You do not currently have access to this content.