We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se)2 (CIGS) or Cu2ZnSn(S,Se)4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be less effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.

1.
M.
Powalla
,
P.
Jackson
,
W.
Witte
,
D.
Hariskos
,
S.
Paetel
,
C.
Tschamber
, and
W.
Wischmann
,
Sol. Energy Mater. Sol. Cells
119
,
51
(
2013
).
2.
P.
Reinhard
,
A.
Chirila
,
P.
Blosch
,
F.
Pianezzi
,
S.
Nishiwaki
,
S.
Buecheler
, and
A. N.
Tiwari
,
IEEE J. Photovoltaics
3
,
572
(
2013
).
3.
M. P.
Suryawanshi
,
G. L.
Agawane
,
S. M.
Bhosale
,
S. W.
Shin
,
P. S.
Patil
,
J. H.
Kim
, and
A. V.
Moholkar
,
Mater. Technol.
28
,
98
(
2013
).
4.
D.
Schmid
,
M.
Ruckh
, and
H.-W.
Schock
,
Appl. Surf. Sci.
103
,
409
(
1996
).
5.
A.
Klein
and
W.
Jaegermann
,
Appl. Phys. Lett.
74
,
2283
(
1999
).
6.
A.
Hofmann
and
C.
Pettenkofer
,
Appl. Phys. Lett.
101
,
062108
(
2012
).
7.
M.
Bär
,
J.
Klaer
,
L.
Weinhardt
,
R. G.
Wilks
,
S.
Krause
,
M.
Blum
,
W.
Yang
,
C.
Heske
, and
H.-W.
Schock
,
Adv. Energy Mater.
3
,
777
(
2013
).
8.
D.
Liao
and
A.
Rockett
,
J. Appl. Phys.
93
,
9380
(
2003
).
9.
T.
Nakada
and
A.
Kunioka
,
Appl. Phys. Lett.
74
,
2444
(
1999
).
10.
C.
Heske
,
D.
Eich
,
R.
Fink
,
E.
Umbach
,
T.
van Buuren
,
C.
Bostedt
,
L. J.
Terminello
,
S.
Kakar
,
M. M.
Grush
,
T. A.
Callcott
,
F. J.
Himpsel
,
D. L.
Ederer
,
R. C. C.
Perera
,
W.
Riedl
, and
F.
Karg
,
Appl. Phys. Lett.
74
,
1451
(
1999
).
11.
R.
Krishnan
,
G.
Tong
,
W. K.
Kim
,
R.
Kaczynski
,
U.
Schoop
,
E. A.
Payzant
, and
T. J.
Anderson
, in
38th IEEE Photovoltaic Specialists Conference, June 2013
(
IEEE
,
New York
,
2012
), p.
001970
.
12.
A.
Aquino
and
A.
Rockett
,
J. Vac. Sci. Technol. A
31
,
021202
(
2013
).
13.
J.
Bastek
,
N. A.
Stolwijk
,
R.
Wuerz
,
A.
Eicke
,
J.
Albert
, and
S.
Sadewasser
,
Appl. Phys. Lett.
101
,
074105
(
2012
).
14.
N.
Naghavi
,
D.
Abou-Ras
,
N.
Allsop
,
N.
Barreau
,
S.
Bücheler
,
A.
Ennaoui
,
C. H.
Fischer
,
C.
Guillen
,
D.
Hariskos
,
J.
Herrero
,
R.
Klenk
,
K.
Kushiya
,
D.
Lincot
,
R.
Menner
,
T.
Nakada
,
C.
Platzer-Björkman
,
S.
Spiering
,
A. N.
Tiwari
, and
T.
Törndahl
,
Prog. Photovoltaics
18
,
411
(
2010
).
15.
A.
Chirilă
,
P.
Reinhard
,
F.
Pianezzi
,
P.
Bloesch
,
A. R.
Uhl
,
C.
Fella
,
L.
Kranz
,
D.
Keller
,
C.
Gretener
,
H.
Hagendorfer
,
D.
Jaeger
,
R.
Erni
,
S.
Nishiwaki
,
S.
Buecheler
, and
A. N.
Tiwari
,
Nature Mater.
12
,
1107
(
2013
).
16.
M.
Igalson
,
P.
Zabierowski
,
D.
Przado
,
A.
Urbaniak
,
M.
Edoff
, and
W. N.
Shafarman
,
Sol. Energy Mater. Sol. Cells
93
,
1290
(
2009
).
17.
J. B.
Varley
and
V.
Lordi
,
Appl. Phys. Lett.
103
,
102103
(
2013
).
18.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
);
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906
(
2006
).
19.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
20.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
);
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
21.
C.
Freysoldt
,
J.
Neugebauer
, and
C. G.
Van de Walle
,
Phys. Rev. Lett.
102
,
016402
(
2009
);
[PubMed]
C.
Freysoldt
,
J.
Neugebauer
, and
C. G.
Van de Walle
,
Phys. Status Solidi B
248
,
1067
(
2011
).
22.
O.
Madelung
,
Semiconductors: Data Handbook
(
Springer Verlag
,
2004
).
23.
C. G.
Van de Walle
and
J.
Neugebauer
,
J. Appl. Phys.
95
,
3851
(
2004
).
24.
U. V.
Desnica
,
Prog. Cryst. Growth Charact.
36
,
291
(
1998
).
25.
R. N.
Bhargava
,
J. Cryst. Growth
59
,
15
(
1982
).
26.
J. J.
Davies
and
J. E.
Nicholls
,
J. Phys. C: Solid State Phys.
12
,
3329
(
1979
).
27.
J. P.
Bosco
,
F.
Tajdar
, and
H. A.
Atwater
, in
38th IEEE Photovoltaic Specialists Conference, June 2013
(
IEEE
,
New York
,
2012
), p.
002513
.
28.
T.
Nakada
,
Thin Solid Films
361–362
,
346
(
2000
).
29.
M.
Sugiyama
,
A.
Kinoshita
,
A.
Miyama
,
H.
Nakanishi
, and
S. F.
Chichibu
,
J. Cryst. Growth
310
,
794
(
2008
).
30.
C.
Persson
,
Y.-J.
Zhao
,
S.
Lany
, and
A.
Zunger
,
Phys. Rev. B
72
,
035211
(
2005
).
31.
J.
Kiss
,
T.
Gruhn
,
G.
Roma
, and
C.
Felser
,
J. Phys. Chem. C
117
,
25933
(
2013
).
32.
P. H.
Kasai
and
Y.
Otomo
,
J. Chem. Phys.
37
,
1263
(
1962
).
33.
J. W.
Allen
,
Semicond. Sci. Technol.
10
,
1049
(
1995
).
34.
B. K.
Meyer
and
W.
Stadler
,
J. Cryst. Growth
161
,
119
(
1996
).
35.
U. V.
Desnica
,
I. D.
Desnica-Frankovic
,
R.
Magerle
, and
M.
Deicher
,
Physica B
273–274
,
907
(
1999
).
36.
U. V.
Desnica
,
I. D.
Desnica-Frankovic
,
R.
Magerle
,
A.
Burchard
, and
M.
Deicher
,
J. Cryst. Growth
197
,
612
(
1999
).
37.
G. D.
Watkins
,
Solid State Commun.
12
,
589
(
1973
).
38.
J.
Pohl
and
K.
Albe
,
Phys. Rev. B
87
,
245203
(
2013
).
39.
B.
Huang
,
S.
Chen
,
H.-X.
Deng
,
L.-W.
Wang
,
M. A.
Contreras
,
R. N.
Noufi
, and
S.-H.
Wei
,
IEEE J. Photovoltaics
4
,
477
(
2014
).
40.
M.
Nichterwitz
,
R.
Caballero
,
C. A.
Kaufmann
,
H.-W.
Schock
, and
T.
Unold
,
J. Appl. Phys.
113
,
044515
(
2013
).
41.
I. L.
Eisgruber
,
J. E.
Granata
,
J. R.
Sites
,
J.
Hou
, and
J.
Kessler
,
Sol. Energy Mater. Sol. Cells
53
,
367
(
1998
).
42.
A. O.
Pudov
,
A.
Kanevce
,
H. A.
Al-Thani
,
J. R.
Sites
, and
F. S.
Hasoon
,
J. Appl. Phys.
97
,
064901
(
2005
).
43.
A. O.
Pudov
,
J. R.
Sites
,
M. A.
Contreras
,
T.
Nakada
, and
H.-W.
Schock
,
Thin Solid Films
480–481
,
273
(
2005
).
44.
R. H.
Bube
,
J. Appl. Phys.
32
,
1707
(
1961
).
45.
R. H.
Bube
and
F.
Cardon
,
J. Appl. Phys.
35
,
2712
(
1964
).
46.
K. M.
Lee
,
K. P.
O'Donnell
, and
G. D.
Watkins
,
Solid State Commun.
41
,
881
(
1982
).
47.
F.
Tuomisto
,
V.
Ranki
,
K.
Saarinen
, and
D. C.
Look
,
Phys. Rev. Lett.
91
,
205502
(
2003
).
48.
J. L.
Lyons
, private communication (unpublished).
49.
T. K.
Todorov
,
J.
Tang
,
S.
Bag
,
O.
Gunawan
,
T.
Gokmen
,
Y.
Zhu
, and
D. B.
Mitzi
,
Adv. Energy Mater.
3
,
34
(
2013
).
50.
T. K.
Todorov
,
K. B.
Reuter
, and
D. B.
Mitzi
,
Adv. Mater.
22
,
E156
(
2010
).
51.
P.
Sinsermsuksakul
,
K.
Hartman
,
S. Bok
Kim
,
J.
Heo
,
L.
Sun
,
H. Hejin
Park
,
R.
Chakraborty
,
T.
Buonassisi
, and
R. G.
Gordon
,
Appl. Phys. Lett.
102
,
053901
(
2013
).
52.
D. A. R.
Barkhouse
,
R.
Haight
,
N.
Sakai
,
H.
Hiroi
,
H.
Sugimoto
, and
D. B.
Mitzi
,
Appl. Phys. Lett.
100
,
193904
(
2012
).
53.
A.
Walsh
,
S.
Chen
,
S.-H.
Wei
, and
X. G.
Gong
,
Adv. Energy Mater.
2
,
400
(
2012
).
54.
R.
Heitz
,
A.
Hoffmann
,
P.
Thurian
, and
I.
Broser
,
J. Phys.: Condens. Matter
4
,
157
(
1992
).
55.
U. V.
Desnica
,
I. D.
Desnica-Frankovic
,
R.
Magerle
,
A.
Burchard
, and
M.
Deicher
,
Mater. Sci. Forum
258–263
,
1347
(
1997
).
56.
I. D.
Desnica-Frankovic
,
U. V.
Desnica
,
A.
Stötzler
, and
M.
Deicher
,
Physica B
273–274
,
887
(
1999
).
57.
G.
Sullivan
,
Phys. Rev.
184
,
796
(
1969
).
58.
E.
Bacaksiz
,
T. D.
Dzhafarov
,
V. D.
Novruzov
,
K.
Öztürk
,
M.
Tomakin
,
T.
Küçükömeroğlu
,
M.
Altunbaş
,
E.
Yanmaz
, and
B.
Abay
,
Phys. Status Solidi A
201
,
2948
(
2004
).
59.
S.
Shionoya
,
J. Lumin.
1
,
17
(
1970
).
60.
S.
Chen
,
A.
Walsh
,
J.-H.
Yang
,
X. G.
Gong
,
L.
Sun
,
P.-X.
Yang
,
J.-H.
Chu
, and
S.-H.
Wei
,
Phys. Rev. B
83
,
125201
(
2011
).
61.
J.
Hedström
,
H.
Ohlsen
,
M.
Bodegård
,
A.
Kylner
,
L.
Stolt
,
D.
Hariskos
,
M.
Ruckh
, and
H.
Schock
, in
23rd IEEE Photovoltaic Specialists Conference, May 1993
(
IEEE
,
New York
,
1993
), pp.
364
371
.
62.
F.
Kessler
and
D.
Rudmann
,
Sol. Energy
77
,
685
(
2004
).
63.
J.
Eid
,
H.
Liang
,
I.
Gereige
,
S.
Lee
, and
J. V.
Duren
, “
Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells
,”
Prog. Photovoltaics
(published online).
64.
D.-H.
Cho
,
K.-S.
Lee
,
Y.-D.
Chung
,
J.-H.
Kim
,
S.-J.
Park
, and
J.
Kim
,
Appl. Phys. Lett.
101
,
023901
(
2012
).
65.
X.
Song
,
R.
Caballero
,
R.
Félix
,
D. L.
Gerlach
,
C. A.
Kaufmann
,
H.-W.
Schock
,
R. G.
Wilks
, and
M.
Bär
,
J. Appl. Phys.
111
,
034903
(
2012
).
66.
L.
Kronik
,
D.
Cahen
, and
H.-W.
Schock
,
Adv. Mater.
10
,
31
(
1998
).
67.
A.
Rockett
,
Thin Solid Films
480–481
,
2
(
2005
).
68.
P. T.
Erslev
,
J. W.
Lee
,
W. N.
Shafarman
, and
J. D.
Cohen
,
Thin Solid Films
517
,
2277
(
2009
).
69.
L. E.
Oikkonen
,
M. G.
Ganchenkova
,
A. P.
Seitsonen
, and
R. M.
Nieminen
,
J. Appl. Phys.
114
,
083503
(
2013
).
70.
S.-H.
Wei
,
S. B.
Zhang
, and
A.
Zunger
,
J. Appl. Phys.
85
,
7214
(
1999
).
71.
C.
Henry
,
K.
Nassau
, and
J.
Shiever
,
Phys. Rev. B
4
,
2453
(
1971
).
72.
T.
Taguchi
,
Z.
Kawazu
,
T.
Ohno
, and
A.
Sawada
,
J. Cryst. Growth
101
,
294
(
1990
).
You do not currently have access to this content.