We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

1.
S.
Fan
,
P.
Villeneuve
,
J.
Joannopoulos
, and
E.
Schubert
, “
High extraction efficiency of spontaneous emission from slabs of photonic crystals
,”
Phys. Rev. Lett.
78
,
3294
3297
(
1997
).
2.
T. N.
Oder
,
J.
Shakya
,
J. Y.
Lin
, and
H. X.
Jiang
, “
III-nitride photonic crystals
,”
Appl. Phys. Lett.
83
,
1231
1233
(
2003
).
3.
J. J.
Wierer
,
M. R.
Krames
,
J. E.
Epler
,
N. F.
Gardner
,
M. G.
Craford
,
J. R.
Wendt
,
J. A.
Simmons
, and
M. M.
Sigalas
, “
InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures
,”
Appl. Phys. Lett.
84
,
3885
3887
(
2004
).
4.
M.
Charlton
,
T.
Lee
,
M.
Zoorob
,
P.
Shields
, and
W.
Wang
, “
Improving LED extraction efficiency through surface patterning
,” edited by
T.
Ferguson
,
N.
Narendran
,
T.
Taguchi
, and
I. E.
Ashdown
, in
Proceedings of SPIE
(
SPIE
,
2007
), Vol.
6669
, p.
666914
.
5.
P.
Shields
,
M.
Charlton
,
T.
Lee
,
M.
Zoorob
,
D.
Allsopp
, and
W.
Wang
, “
Enhanced light extraction by photonic quasi-crystals in GaN blue LEDs
,”
IEEE J. Sel. Topics Quantum Electron.
15
,
1269
1274
(
2009
).
6.
C.
Wiesmann
,
K.
Bergenek
,
N.
Linder
, and
U.
Schwarz
, “
Photonic crystal LEDs—Designing light extraction
,”
Laser Photonics Rev.
3
,
262
286
(
2009
).
7.
J. J.
Wierer
,
A.
David
, and
M. M.
Megens
, “
III-nitride photonic-crystal light-emitting diodes with high extraction efficiency
,”
Nat. Photonics
3
,
163
169
(
2009
).
8.
A.
David
,
H.
Benisty
, and
C.
Weisbuch
, “
Photonic crystal light-emitting sources
,”
Rep. Prog. Phys.
75
,
126501
(
2012
).
9.
C.
Lai
,
H.
Kuo
,
C.-H.
Chao
,
P.
Yu
, and
W.
Yeh
, “
Structural effects on highly directional far-field emission patterns of GaN-based micro-cavity light-emitting diodes with photonic crystals
,”
J. Lightwave Technol.
28
,
2881
2889
(
2010
).
10.
E.
Rangel
,
E.
Matioli
,
Y.-S.
Choi
,
C.
Weisbuch
,
J. S.
Speck
, and
E. L.
Hu
, “
Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes
,”
Appl. Phys. Lett.
98
,
081104
(
2011
).
11.
G.
Harbers
,
S. J.
Bierhuizen
, and
M. R.
Krames
, “
Performance of high power light emitting diodes in display illumination applications
,”
J. Display Technol.
3
,
98
109
(
2007
).
12.
A.
Wilm
, “
Requirements on LEDs in etendue limited light engines
,”
Proc. SPIE
7001
,
70010F
(
2008
).
13.
M.-K.
Kwon
,
J.-Y.
Kim
,
I.-K.
Park
,
K. S.
Kim
,
G.-Y.
Jung
,
S.-J.
Park
,
J. W.
Kim
, and
Y. C.
Kim
, “
Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal
,”
Appl. Phys. Lett.
92
,
251110
(
2008
).
14.
E.
Matioli
and
C.
Weisbuch
, “
Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs
,”
J. Phys. D: Appl. Phys.
43
,
354005
(
2010
).
15.
C. J.
Lewins
,
D. W. E.
Allsopp
,
P. A.
Shields
,
X.
Gao
,
B.
Humphreys
, and
W. N.
Wang
, “
Light extracting properties of buried photonic quasi-crystal slabs in InGaN/GaN LEDs
,”
J. Display Technol.
9
,
333
338
(
2013
).
16.
E.
Yablonovitch
, “
Inhibited spontaneous emission in solid-state physics and electronics
,”
Phys. Rev. Lett.
58
,
2059
2062
(
1987
).
17.
S.
Johnson
,
P.
Villeneuve
,
S.
Fan
, and
J.
Joannopoulos
, “
Linear waveguides in photonic-crystal slabs
,”
Phys. Rev. B
62
,
8212
8222
(
2000
).
18.
C.
Jamois
,
R.
Wehrspohn
,
L.
Andreani
,
C.
Hermann
,
O.
Hess
, and
U.
Gösele
, “
Silicon-based two-dimensional photonic crystal waveguides
,”
Photonics Nanostruct.
1
,
1
13
(
2003
).
19.
M.
Boroditsky
,
T. F.
Krauss
,
R.
Coccioli
,
R.
Vrijen
,
R.
Bhat
, and
E.
Yablonovitch
, “
Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals
,”
Appl. Phys. Lett.
75
,
1036
(
1999
).
20.
R. K.
Lee
,
Y.
Xu
, and
A.
Yariv
, “
Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab
,”
J. Opt. Soc. Am. B
17
,
1438
1442
(
2000
).
21.
A.-L.
Fehrembach
,
S.
Enoch
, and
A.
Sentenac
, “
Highly directive light sources using two-dimensional photonic crystal slabs
,”
Appl. Phys. Lett.
79
,
4280
4282
(
2001
).
22.
M.
Fujita
,
S.
Takahashi
,
Y.
Tanaka
,
T.
Asano
, and
S.
Noda
, “
Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals
,”
Science
308
,
1296
1298
(
2005
).
23.
F.
Qian
,
S.
Gradecak
,
Y.
Li
,
C.-Y.
Wen
, and
C. M.
Lieber
, “
Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes
,”
Nano Lett.
5
,
2287
2291
(
2005
).
24.
A.-L.
Bavencove
,
D.
Salomon
,
M.
Lafossas
,
B.
Martin
,
A.
Dussaigne
,
F.
Levy
,
B.
Andre
,
P.
Ferret
,
C.
Durand
,
J.
Eymery
,
L. S.
Dang
, and
P.
Gilet
, “
Light emitting diodes based on GaN core/shell wires grown by MOVPE on n-type Si substrate
,”
Electron. Lett.
47
,
765
766
(
2011
).
25.
J.-R.
Chang
,
S.-P.
Chang
,
Y.-J.
Li
,
Y.-J.
Cheng
,
K.-P.
Sou
,
J.-K.
Huang
,
H.-C.
Kuo
, and
C.-Y.
Chang
, “
Fabrication and luminescent properties of core-shell InGaN/GaN multiple quantum wells on GaN nanopillars
,”
Appl. Phys. Lett.
100
,
261103
(
2012
).
26.
S.
Li
and
A.
Waag
, “
GaN based nanorods for solid state lighting
,”
J. Appl. Phys.
111
,
071101
(
2012
).
27.
C.
Kolper
,
W.
Bergbauer
,
P.
Drechsel
,
M.
Sabathil
,
M.
Strassburg
,
H.-J.
Lugauer
,
B.
Witzigmann
,
S.
Fundling
,
S.
Li
,
H.-H.
Wehmann
, and
A.
Waag
, “
Towards nanorod LEDs: Numerical predictions and controlled growth
,”
Phys. Status Solidi C
8
,
2305
2307
(
2011
).
28.
Y.
Zhuang
,
C.
Lewins
,
S.
Lis
,
P.
Shields
, and
D.
Allsopp
, “
Fabrication and characterization of light emitting diodes comprising highly ordered arrays of emissive InGaN/GaN nanorods
,”
IEEE Photon. Technol. Lett.
25
,
1047
1049
(
2013
).
29.
E. D. Le
Boulbar
,
I.
Gîrgel
,
C. J.
Lewins
,
P. R.
Edwards
,
R. W.
Martin
,
A.
Šatka
,
D. W. E.
Allsopp
, and
P. A.
Shields
, “
Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays
,”
J. Appl. Phys.
114
,
094302
(
2013
).
30.
S.
Keller
,
C.
Schaake
,
N. A.
Fichtenbaum
,
C. J.
Neufeld
,
Y.
Wu
,
K.
McGroddy
,
A.
David
,
S. P.
DenBaars
,
C.
Weisbuch
,
J. S.
Speck
, and
U. K.
Mishra
, “
Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi-quantum wells
,”
J. Appl. Phys.
100
,
054314
(
2006
).
31.
A.
David
,
H.
Benisty
, and
C.
Weisbuch
, “
Spontaneous emission in GaN/InGaN photonic crystal nanopillars
,”
Opt. Express
15
,
17991
(
2007
).
32.
P. A.
Shields
and
D. W.
Allsopp
, “
Nanoimprint lithography resist profile inversion for lift-off applications
,”
Microelectron. Eng.
88
,
3011
3014
(
2011
).
33.
P.
Shields
,
M.
Hugues
,
J. Zúñiga
Pérez
,
M.
Cooke
,
M.
Dineen
,
W.
Wang
,
F.
Causa
, and
D.
Allsopp
, “
Fabrication and properties of etched GaN nanorods
,”
Phys. Status Solidi C
9
,
631
634
(
2012
).
34.
P. R.
Edwards
and
R. W.
Martin
, “
Cathodoluminescence nano-characterization of semiconductors
,”
Semicond. Sci. Technol.
26
,
064005
(
2011
).
35.

The roller NIL process used produced an asymmetric pattern distortion to the hexagonal tiling of the nanorods as shown in Figure 1(c). Relative to the lattice vectors a, b, and c illustrated in Figure 1(c), the distortion resulted in a 10% elongation in the b and c direction relative to a, which is at the intended 600 nm pitch.

36.
D.
Aspnes
, “
Local-field effects and effective-medium theory: A microscopic perspective
,”
Am. J. Phys.
50
,
704
709
(
1982
).
37.
P.
Yeh
,
Optical Waves in Layered Media
(
Wiley
,
Hoboken, NJ
,
2005
), p.
416
.
You do not currently have access to this content.