We report nanocrystalline carbon impurities coexisting with graphene synthesized via chemical vapor deposition on platinum. For certain growth conditions, we observe micron-size island-like impurity layers which can be mistaken for second graphene layers in optical microscopy or scanning electron microscopy. The island orientation depends on the crystalline orientation of the Pt, as shown by electron backscatter diffraction, indicating growth of carbon at the platinum surface below graphene. Dark-field transmission electron microscopy indicates that in addition to uniform single-crystal graphene, our sample is decorated with nanocrystalline carbon impurities with a spatially inhomogeneous distribution. The impurity concentration can be reduced significantly by lowering the growth temperature. Raman spectra show a large D peak, however, electrical characterization shows high mobility (∼8000 cm2/Vs), indicating a limitation for Raman spectroscopy in characterizing the electronic quality of graphene.

1.
L.
Gao
,
W.
Ren
,
H.
Xu
,
L.
Jin
,
Z.
Wang
,
T.
Ma
,
L.-P.
Ma
,
Z.
Zhang
,
Q.
Fu
,
L.-M.
Peng
,
X.
Bao
, and
H.-M.
Cheng
, “
Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum
,”
Nat. Commun.
3
,
699
(
2012
).
2.
X.
Li
,
W.
Cai
,
J.
An
,
S.
Kim
,
J.
Nah
,
D.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
, “
Large-area synthesis of high-quality and uniform graphene films on copper foils
,”
Science
324
,
1312
1314
(
2009
).
3.
J. C.
Meyer
,
A. K.
Geim
,
M. I.
Katsnelson
,
K. S.
Novoselov
,
T. J.
Booth
, and
S.
Roth
, “
The structure of suspended graphene sheets
,”
Nature
446
,
60
63
(
2007
).
4.
J.
Sun
,
Y.
Nam
,
N.
Lindvall
,
M. T.
Cole
,
K. B. K.
Teo
,
Y. W.
Park
, and
A.
Yurgens
, “
Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation
,”
Appl. Phys. Lett.
104
,
152107
(
2014
).
5.
N.
Liu
,
Z.
Pan
,
L.
Fu
,
C.
Zhang
,
B.
Dai
, and
Z.
Liu
, “
The origin of wrinkles on transferred graphene
,”
Nano Res.
4
,
996
1004
(
2011
).
6.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
, and
A. K.
Geim
, “
Raman spectrum of graphene and graphene layers
,”
Phys. Rev. Lett.
97
,
187401
(
2006
).
7.
J.
Ping
and
M.
Fuhrer
, “
Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy
,”
Nano Lett.
12
,
4635
4641
(
2012
).
8.
P. Y.
Huang
,
C. S.
Ruiz-Vargas
,
A. M.
van der Zande
,
W. S.
Whitney
,
M. P.
Levendorf
,
J. W.
Kevek
,
S.
Garg
,
J. S.
Alden
,
C. J.
Hustedt
,
Y.
Zhu
,
J.
Park
,
P. L.
McEuen
, and
D. A.
Muller
, “
Grains and grain boundaries in single-layer graphene atomic patchwork quilts
,”
Nature
469
,
389
392
(
2011
).
9.
L.
Brown
,
R.
Hovden
,
P.
Huang
,
M.
Wojcik
,
D. A.
Muller
, and
J.
Park
, “
Twinning and twisting of tri- and bilayer graphene
,”
Nano Lett.
12
,
1609
1615
(
2012
).
10.
S.
Nie
,
W.
Wu
,
S.
Xing
,
Q.
Yu
,
J.
Bao
,
S.-S.
Pei
, and
K. F.
McCarty
, “
Growth from below: bilayer graphene on copper by chemical vapor deposition
,”
New J. Phys.
14
,
093028
(
2012
).
11.
A.
Umair
and
H.
Raza
, “
Controlled synthesis of bilayer graphene on nickel
,”
Nanoscale Res. Lett.
7
,
437
(
2012
).
12.
A.
Dahal
,
R.
Addou
,
P.
Sutter
, and
M.
Batzill
, “
Graphene monolayer rotation on Ni(111) facilitates bilayer graphene growth
,”
Appl. Phys. Lett.
100
,
241602
(
2012
).
13.
Y.
Xue
,
B.
Wu
,
Y.
Guo
,
L.
Huang
,
L.
Jiang
,
J.
Chen
,
D.
Geng
,
Y.
Liu
,
W.
Hu
, and
G.
Yu
, “
Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition
,”
Nano Res.
4
,
1208
1214
(
2011
).
14.
M. M.
Lucchese
,
F.
Stavale
,
E. H. M.
Ferreira
,
C.
Vilani
,
M. V. O.
Moutinho
,
R. B.
Capaz
,
C. A.
Achete
, and
A.
Jorio
, “
Quantifying ion-induced defects and Raman relaxation length in graphene
,”
Carbon
48
,
1592
1597
(
2010
).
15.
A.
Das
,
S.
Pisana
,
B.
Chakraborty
,
S.
Piscanec
,
S. K.
Saha
,
U. V.
Waghmare
,
K. S.
Novoselov
,
H. R.
Krishnamurthy
,
A. K.
Geim
,
A. C.
Ferrari
, and
A. K.
Sood
, “
Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
,”
Nat. Nanotechnol.
3
,
210
215
(
2008
).
16.
P.
Poncharal
,
A.
Ayari
,
T.
Michel
, and
J.-L.
Sauvajol
, “
Raman spectra of misoriented bilayer graphene
,”
Phys. Rev. B
78
,
113407
(
2008
).
17.
D. R.
Lenski
and
M. S.
Fuhrer
, “
Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition
,”
J. Appl. Phys.
110
,
013720
(
2011
).
18.
H.
Cao
,
Q.
Yu
,
L. A.
Jauregui
,
J.
Tian
,
W.
Wu
,
Z.
Liu
,
R.
Jalilian
,
D. K.
Benjamin
,
Z.
Jiang
,
J.
Bao
,
S. S.
Pei
, and
Y. P.
Chen
, “
Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization
,”
Appl. Phys. Lett.
96
,
122106
(
2010
).
19.
S. V.
Morozov
,
K. S.
Novoselov
,
M. I.
Katsnelson
,
F.
Schedin
,
D. C.
Elias
,
J. A.
Jaszczak
, and
A. K.
Geim
, “
Giant intrinsic carrier mobilities in graphene and its bilayer
,”
Phys. Rev. Lett.
100
,
016602
(
2008
).
20.
X.
Du
,
I.
Skachko
,
A.
Barker
, and
E. Y.
Andrer
, “
Approaching ballistic transport in suspended graphene
,”
Nat. Nanotechnol.
3
,
491
495
(
2008
).
21.
W.
Zhang
,
P.
Wu
,
Z.
Li
, and
J.
Yang
, “
First-principles thermodynamics of graphene growth on Cu surfaces
,”
J. Phys. Chem. C
115
,
17782
17787
(
2011
).
22.
H.
Chen
,
W.
Zhu
, and
Z.
Zhang
, “
Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces
,”
Phys. Rev. Lett.
104
,
186101
(
2010
).
23.
J.
Ping
,
I.
Yudhistira
,
N.
Ramakrishanan
,
S.
Cho
,
S.
Adam
, and
M. S.
Fuhrer
, “
Disorder induced magnetoresistance in two dimensional electron system
,”
Phys. Rev. Lett.
(to be published); e-print arXiv:1401.5094.
You do not currently have access to this content.