One-dimensional (1D) chain-like nanocomposites, created by ensembles of nanoparticles of with diameter ∼ 13 nm, which are composed of an iron core (∼4 nm) and a silica protective layer, were prepared by a self-assembly process. Chain-like Fe@SiO2 ensembles were formed due to strong magnetic dipole–dipole interactions between individual Fe nanoparticles and the subsequent fixation of the Fe particles by the SiO2 layers. X-ray near edge absorption spectra measurements at the Fe K absorption edge confirm that the presence of a silica layer prevents the oxidation of the magnetic Fe core. Strong magnetic interactions between Fe cores lead to long-range ordering of magnetic moments, and the nanoparticle ensembles exhibit superferromagnetic characteristics demonstrated by a broad blocking Zero-field cooling (ZFC)/field-cooling distribution, nearly constant temperature dependence of ZFC magnetization, and non-zero coercivity at room temperature. Low room-temperature coercivity and the presence of electrically insulating SiO2 shells surrounding the Fe core make the studied samples suitable candidates for microelectronic applications.

1.
S. A.
Majetich
,
Nanostructured Materials: Processing, Properties, and Applications
, 2nd ed. (
William Andrew Inc.
,
USA
,
2007
), pp.
439
486
.
2.
C. L.
Dennis
,
R. P.
Borges
,
L. D.
Buda
,
U.
Ebels
,
J. F.
Gregg
,
M.
Hehn
,
E.
Jouguelet
,
K.
Ounadjela
,
I.
Petej
,
I. L.
Prejbeanu
, and
M. J.
Thornton
,
J. Phys.: Condens. Matter.
14
,
R1175
R1262
(
2002
).
3.
C.
Djurberg
,
P.
Svedlindh
,
P.
Nordblad
,
M. F.
Hansen
,
F.
Bødker
, and
S.
Mørup
,
Phys. Rev. Lett.
79
,
5154
5157
(
1997
).
4.
J. M.
Vargas
,
W. C.
Nunes
,
L. M.
Socolovsky
,
M.
Knobel
, and
D.
Zanchet
,
Phys. Rev. B
72
,
184428
(
2005
).
5.
S.
Karmakar
,
S.
Kumar
,
R.
Rinaldi
, and
G.
Maruccio
,
J. Phys.: Conf. Ser.
292
,
012002
(
2011
).
6.
A. K.
Gupta
and
M.
Gupta
,
Biomaterials
26
,
3995
4021
(
2005
).
7.
Q. A.
Pankhurst
,
J.
Connolly
,
S. K.
Jones
, and
J.
Dobson
,
J. Phys. D: Appl. Phys.
36
,
R167
(
2003
).
8.
T.
Jonsson
,
P.
Nordblad
, and
P.
Svedlindh
,
Phys. Rev. B
57
,
497
(
1998
).
9.
O.
Petracic
,
X.
Chen
,
S.
Bedanta
,
W.
Kleemann
,
S.
Sahoo
,
S.
Cardoso
, and
P. P.
Freitas
,
J. Magn. Magn. Mater.
300
,
192
(
2006
).
10.
S.
Mørup
,
M. F.
Hansen
, and
C.
Frandsen
,
Beilstein J. Nanotechnol.
1
,
182
190
(
2010
).
11.
V.
Markovich
,
I.
Fita
,
A.
Wisniewski
,
G.
Jung
,
D.
Mogilyansky
,
R.
Puzniak
,
L.
Titelman
, and
G.
Gorodetsky
,
Phys. Rev. B
81
,
134440
(
2010
).
12.
M.
Suzuki
,
S. I.
Fullem
,
I. S.
Suzuki
,
L.
Wang
, and
C. J.
Zhong
,
Phys. Rev. B
79
,
024418
(
2009
).
13.
S.
Sahoo
,
O.
Petracic
,
Ch.
Binek
,
W.
Kleemann
,
J. B.
Sousa
,
S.
Cardoso
, and
P. P.
Freitas
,
Phys. Rev. B
65
,
134406
(
2002
).
14.
S.
Morup
,
M. B.
Madsen
,
J.
Franck
,
J.
Villadsen
, and
C. J. W.
Koch
,
J. Magn. Magn. Mater.
40
,
163
(
1983
).
15.
W.
Kleemann
,
O.
Petracic
,
Ch.
Binek
,
G. N.
Kakazei
,
Y. G.
Pogorelov
,
J. B.
Sousa
,
S.
Cardoso
, and
P. P.
Freitas
,
Phys. Rev. B.
63
,
134423
(
2001
).
16.
S.
Bedanta
,
T.
Eimüller
,
W.
Kleemann
,
J.
Rhensius
,
F.
Stromberg
,
E.
Amaladass
,
S.
Cardoso
, and
P. P.
Freitas
,
Phys. Rev. Lett.
98
,
176601
(
2007
).
17.
S.
Bedanta
and
W.
Kleemann
,
J. Phys. D: Appl. Phys.
42
,
013001
(
2009
).
18.
J.
Alonso
,
M. L.
Fdez-Gubieda
,
J. M.
Barandiarán
, and
A.
Svalov
,
Phys. Rev. B
82
,
054406
(
2010
).
19.
F.
Jimenez-Villacorta
,
J.
Sanchez-Marcos
,
E.
Cespedes
,
M.
García-Hernández
, and
C.
Prieto
,
Phys. Rev. B
82
,
134413
(
2010
).
20.
T. I.
Yang
,
R. N. C.
Brown
,
L. C.
Kempel
, and
P.
Kofinas
,
Nanotechnology
22
,
105601
(
2011
).
21.
V.
Salgueirino-Maceira
,
M. A.
Correa-Duarte
,
A.
Hucht
, and
M.
Farle
,
J. Magn. Magn. Mater.
303
,
163
166
(
2006
).
22.
M.
Grzelczak
,
J.
Perez-Juste
,
B.
Rodriguez-Gonzalez
,
M.
Spasova
,
I.
Barsukov
,
M.
Farle
, and
L. M.
Liz-Marzan
,
Chem. Mater.
20
,
5399
(
2008
).
23.
Y.
Kobayashi
,
M.
Horie
,
M.
Konno
,
B.
Rodriguez-Gonzalez
, and
L. M.
Liz-Marzan
,
J. Phys. Chem. B
107
,
7420
(
2003
).
24.
A. P.
Hammersley
,
S. O.
Svensson
,
M.
Hanfland
,
A. N.
Fitch
, and
D.
Häusetmann
,
High Press. Res.
14
,
235
(
1996
).
25.
S.
Kraft
,
J.
Stumpel
,
P.
Becker
, and
U.
Kuetgens
,
Rev. Sci. Instrum.
67
,
681
687
(
1996
).
26.
Y. P.
Sun
,
X.
Li
,
J.
Cao
,
W.
Zhang
, and
H. P.
Wang
,
Adv. Colloid Interface Sci.
120
,
47
56
(
2006
).
27.
G.
Cheng
,
J. D.
Carter
, and
T.
Guo
,
Chem. Phys. Lett.
400
,
122
127
(
2004
).
28.
J. B.
Sousa
,
J. A. M.
Santos
,
R. F. A.
Silva
,
J. M.
Teixeira
,
J.
Ventura
,
J. P.
Araújo
,
P. P.
Freitas
,
S.
Cardoso
,
Y. G.
Pogorelov
,
G. N.
Kakazei
, and
E.
Snoeck
,
J. Appl. Phys.
96
,
3861
(
2004
).
29.
M. F.
Hansen
,
C. B.
Koch
, and
S.
Mørup
,
Phys. Rev. B
62
,
1124
(
2000
).
30.
F.
Mazaleyrat
,
J. C.
Faugières
, and
J. F.
Rialland
,
J. Magn. Magn. Mater.
159
,
L33
L38
(
1996
).
31.
A.
Zelenakova
,
J.
Kovac
, and
V.
Zelenak
,
J. Appl. Phys.
108
,
034323
(
2010
).
32.
M.
Tadic
,
V.
Kusigerski
,
D.
Markovic
,
I.
Milosevic
, and
V.
Spasojevic
,
J. Magn. Magn. Mater.
321
,
12
16
(
2009
).
33.
G.
Herzer
,
Handbook of Magnetic Materials
(
Elsevier Science
,
1997
), vol.
10
, pp.
415
462
.
34.
G.
Herzer
,
IEEE Trans. Magn.
26
,
1397
1402
(
1990
).
35.
M.
Solzi
,
C. H.
Pernechele
,
G.
Calestani
,
M.
Villani
,
M.
Gaboardi
, and
A.
Migliori
,
J. Mater. Chem.
21
,
18331
18338
(
2011
).
36.
D. C.
Lee
,
F. V.
Mikulec
,
J. M.
Pelaez
,
B.
Koo
, and
B. A.
Korgel
,
J. Phys. Chem. B
110
,
11160
11166
(
2006
).
37.
C.
Vasquez-Vasquez
,
M. A.
Lopez-Quintela
,
M. C.
Bujan-Nunez
, and
J.
Rivas
,
J. Nanopart. Res.
13
,
1663
1676
(
2011
).
38.
J.
Garcia-Otero
,
M.
Porto
,
J.
Rivas
, and
A.
Bunde
,
J. Appl. Phys.
85
,
2287
(
1999
).
39.
N. E.
Fenineche
,
R.
Hamzaoui
, and
O. El
Kedim
,
Mater. Lett.
57
,
4165
4169
(
2003
).
40.
A.
Zelenakova
,
J.
Kovac
, and
V.
Zelenak
,
Acta Phys. Pol. A
115
,
357
359
(
2009
); available at http://przyrbwn.icm.edu.pl/APP/PDF/115/a115z1103.pdf.
You do not currently have access to this content.