Optimizing the efficiency of Er3+ emission in the near-infrared telecommunication window in glass matrices is currently a subject of great interest in photonics research. In this work, Cu+ ions are shown to be successfully stabilized at a high concentration in Er-containing phosphate glass by a single-step melt-quench method, and demonstrated to transfer energy to Er3+ thereby enhancing the near-infrared emission about 15 times. The spectroscopic data indicate an energy conversion process where Cu+ ions first absorb photons broadly around 360 nm and subsequently transfer energy from the Stokes-shifted emitting states to resonant Er3+ absorption transitions in the visible. Consequently, the Er3+ electronic excited states decay and the 4I3/2 metastable state is populated, leading to the enhanced emission at 1.53 μm. Monovalent copper ions are thus recognized as sensitizers of Er3+ ions, suggesting the potential of Cu+ co-doping for applications in the telecommunications, solar cells, and solid-state lasing realizable under broad band near-ultraviolet optical pumping.

1.
C.
Strohhöfer
and
A.
Polman
,
Appl. Phys. Lett.
81
,
1414
(
2002
).
2.
E.
Trave
,
G.
Mattei
,
P.
Mazzoldi
,
G.
Pellegrini
,
C.
Scian
,
C.
Maurizio
, and
G.
Battaglin
,
Appl. Phys. Lett.
89
,
151121
(
2006
).
3.
J.
Zhou
,
Y.
Teng
,
X.
Liu
,
S.
Ye
,
X.
Xu
,
Z.
Ma
, and
J.
Qiu
,
Opt. Express
18
,
21663
(
2010
).
4.
C.
Maurizio
,
E.
Trave
,
G.
Perotto
,
V.
Bello
,
D.
Pasqualini
,
P.
Mazzoldi
,
G.
Battaglin
,
T.
Cesca
,
C.
Scian
, and
G.
Mattei
,
Phys. Rev. B
83
,
195430
(
2011
).
5.
F.
Xiao
,
R.
Chen
,
Y. Q.
Shen
,
Z. L.
Dong
,
H. H.
Wang
,
Q. Y.
Zhang
, and
H. D.
Sun
,
J. Phys. Chem. C
116
,
13458
(
2012
).
6.
E.
Cattaruzza
,
G.
Battaglin
,
F.
Visentin
,
E.
Trave
,
G.
Aquilanti
, and
G.
Mariotto
,
J. Phys. Chem. C
116
,
21001
(
2012
).
7.
J.
Qi
,
T.
Xu
,
Y.
Wu
,
X.
Shen
,
S.
Dai
, and
Y.
Xu
,
Opt. Mater.
35
,
2502
(
2013
).
8.
Y.
Tian
,
T.
Wei
,
F.
Chen
,
X.
Jing
,
J.
Zhang
, and
S.
Xu
,
J. Quant. Spectrosc. Radiat. Transfer
133
,
311
(
2014
).
9.
E.
Snitzer
and
R.
Woodcock
,
Appl. Phys. Lett.
6
,
45
(
1965
).
10.
E.
Trave
,
E.
Cattaruzza
, and
P.
Riello
,
Opt. Mater.
35
,
2018
(
2013
).
11.
K.
Seneschal
,
F.
Smektala
,
B.
Bureau
,
M. Le
Floch
,
S.
Jiang
,
T.
Luo
,
J.
Lucas
, and
N.
Peyghambarian
,
Mater. Res. Bull.
40
,
1433
(
2005
).
12.
A. Amarnath
Reddy
,
S. Surendra
Babu
,
K.
Pradeesh
,
C. J.
Otton
, and
G. Vijaya
Prakash
,
J. Alloys Compd.
509
,
4047
(
2011
).
13.
Y. C.
Yan
,
A. J.
Faber
,
H. de
Waal
,
P. G.
Kik
, and
A.
Polman
,
Appl. Phys. Lett.
71
,
2922
(
1997
).
14.
S.
Jiang
,
M.
Myers
, and
N.
Peyghambarian
,
J. Non-Cryst. Solids
239
,
143
(
1998
).
15.
S.
Jiang
,
T.
Luo
,
B.-C.
Hwang
,
F.
Smekatala
,
K.
Seneschal
,
J.
Lucas
, and
N.
Peyghambarian
,
J. Non-Cryst. Solids
263–264
,
364
(
2000
).
16.
Q.
Zhang
,
G.
Chen
,
G.
Dong
,
G.
Zhang
,
X.
Liu
,
J.
Qui
,
Q.
Zhou
,
Q.
Chen
, and
D.
Chen
,
Chem. Phys. Lett.
482
,
228
(
2009
).
17.
H.
Liu
and
F.
Gan
,
J. Non-Cryst. Solids
80
,
447
(
1986
).
18.
P.
Boutinaud
,
E.
Duloisy
,
C.
Pedrini
,
B.
Moine
,
C.
Parent
, and
G. Le
Flem
,
J. Solid State Chem.
94
,
236
(
1991
).
19.
A.
Yasumori
,
F.
Tada
,
S.
Yanagida
, and
T.
Kishi
,
J. Electrochem. Soc.
159
,
J143
(
2012
).
20.
T.
Murata
and
K.
Morinaga
,
Proc. SPIE
4102
,
316
(
2000
).
21.
K.
Uchida
,
S.
Kaneko
,
S.
Omi
,
C.
Hata
,
H.
Tanji
,
Y.
Asahara
,
A. J.
Ikushima
,
T.
Tokisaki
, and
A.
Nakamura
,
J. Opt. Soc. Am. B
11
,
1236
(
1994
).
22.
M.
Yamane
and
Y.
Asahara
,
Glasses for Photonics
(
Cambridge University Press
,
Cambridge
,
2000
).
23.
J. A.
Jiménez
,
J. Mater. Sci.
49
,
4387
(
2014
).
24.
J. A.
Jiménez
and
J. B.
Hockenbury
,
J. Mater. Sci.
48
,
6921
(
2013
).
25.
R. F.
Wei
,
C. G.
Ma
,
Y. L.
Wei
,
J. Y.
Gao
, and
H.
Guo
,
Opt. Express
20
,
29743
(
2012
).
26.
H.
Guo
,
R. F.
Wei
, and
X. Y.
Liu
,
Opt. Lett.
37
,
1670
(
2012
).
27.
U.S. Department of Energy, Critical Materials Strategy,
2011
.
28.
S.
Gómez
,
I.
Urra
,
R.
Valiente
, and
F.
Rodríguez
,
Sol. Energy Mater. Sol. Cells
95
,
2018
(
2011
).
29.
M.
Isomura
,
K.
Nakahata
,
M.
Shima
,
S.
Taira
,
K.
Wakisaka
,
M.
Tanaka
, and
S.
Kiyama
,
Sol. Energy Mater. Sol. Cells
74
,
519
(
2002
).
30.
D.
Chen
,
Y.
Wang
, and
M.
Hong
,
Nano Energy
1
,
73
(
2012
).
31.
J. A.
Jiménez
,
J. Non-Cryst. Solids
387
,
124
(
2014
).
32.
J. A.
Jiménez
,
Appl. Phys. A
114
,
1369
(
2014
).
33.
J. A.
Jiménez
,
M.
Sendova
,
B.
Hosterman
, and
L.
Haney
,
Mater. Lett.
131
,
344
(
2014
).
34.
M. A.
García
,
E.
Borsella
,
S. E.
Paje
,
J.
Llopis
,
M. A.
Villegas
, and
R.
Polloni
,
J. Lumin.
93
,
253
(
2001
).
35.
R.
Debnath
and
S. K.
Das
,
Chem. Phys. Lett.
155
,
52
(
1989
).
36.
E.
Borsella
,
A. Dal
Vecchio
,
M. A.
García
,
C.
Sada
,
F.
Gonella
,
R.
Polloni
,
A.
Quaranta
, and
L. J. G. W.
van Wilderen
,
J. Appl. Phys.
91
,
90
(
2002
).
37.
F.
Auzel
, in
Radiationless Processes
, edited by
B. Di
Bartolo
(
Plenum Press
,
New York
,
1980
).
38.
P. I.
Paulose
,
G.
Jose
,
V.
Thomas
,
N. V.
Unnikrishnan
, and
M. K. R.
Warrier
,
J. Phys. Chem. Solids
64
,
841
(
2003
).
39.
E. S.
Kim
,
K. H.
Jang
,
L.
Shi
,
H. J.
Seo
,
T.
Tsuboi
, and
K.
Shimamura
,
J. Korean Phys. Soc.
53
,
782
(
2008
).
40.
D. L.
Dexter
,
J. Chem. Phys.
21
,
836
(
1953
).
41.
S. F.
Li
,
Q. Y.
Zhang
, and
Y. P.
Lee
,
J. Appl. Phys.
96
,
4746
(
2004
).
42.
M.
Matarelli
,
M.
Montagna
,
K.
Vishnubhatla
,
A.
Chiasera
,
M.
Ferrari
, and
G. C.
Righini
,
Phys. Rev. B
75
,
125102
(
2007
).
43.
J. A.
Jiménez
,
Phys. Chem. Chem. Phys.
15
,
17587
(
2013
).
You do not currently have access to this content.