The temperature-dependent thermodynamic and mechanical properties of TiC are systematically investigated by means of a combination of density-functional theory, quasi-harmonic approximation, and thermal electronic excitation. It is found that the quasi-harmonic Debye model should be pertinent to reflect thermodynamic properties of TiC, and the elastic properties of TiC decease almost linearly with the increase of temperature. Calculations also reveal that TiC possesses a pronounced directional pseudogap across the Fermi level, mainly due to the strong hybridization of Ti 3d and C 2p states. Moreover, the strong covalent bonding of TiC would be enhanced (reduced) with the decrease (increase) of temperature, while the change of volume (temperature) should have negligible effect on density of states at the Fermi level. The calculated results agree well with experimental observations in the literature.

1.
S.
Zhang
and
D. L.
Zhao
,
Aerospace Materials Handbook
(
CRC Press
,
2012
), Vol.
6
, p.
182
.
2.
H.
Hwu
and
J. G.
Chen
,
Chem. Rev.
105
,
185
(
2005
).
3.
W. S.
Williams
and
R. D.
Schaal
,
J. Appl. Phys.
33
,
955
(
1962
).
4.
B. H.
Lohse
,
A.
Calka
, and
D.
Wexler
,
J. Appl. Phys.
97
,
114912
(
2005
).
5.
Y.
Shin
,
X. S.
Li
,
C.
Wang
,
J. R.
Coleman
, and
G. J.
Exarhos
,
Adv. Mater.
16
,
1212
(
2004
).
6.
P.
Zhu
,
Y.
Hong
,
B.
Liu
, and
G.
Zou
,
Nanotechnology
20
,
255603
(
2009
).
7.
T.
Yu
,
Y. H.
Deng
,
L.
Wang
,
R. L.
Liu
,
L. J.
Zhang
,
B.
Tu
, and
D. Y.
Zhao
,
Adv. Mater.
19
,
2301
(
2007
).
8.
L. H.
Tian
,
C. X.
Li
,
C. J.
Li
, and
G. J.
Yang
,
J. Therm. Spray Technol.
21
,
689
(
2012
).
9.
C. J.
Engberg
and
E. H.
Zehms
,
J. Am. Chem. Soc.
42
,
300
(
1959
).
10.
S.
Spinner
,
J. Res. Natl. Bur. Stand. Sec. C Eng. Instrum.
65
,
89
(
1961
).
11.
C. R.
Houska
,
J. Phys. Chem. Solids
25
,
359
(
1964
).
12.
K.
Aigner
,
W.
Lengauer
,
D.
Rafaja
, and
P.
Ettmayer
,
J. Alloys Compd.
215
,
121
(
1994
).
13.
B. F.
Naylor
,
J. Am. Chem. Soc.
68
,
370
(
1946
).
14.
L. S.
Levinson
,
J. Chem. Phys.
42
,
2891
(
1965
).
15.
D.
Varshney
and
S.
Shriya
,
Int. J. Refract. Metal. H.
41
,
375
(
2013
).
16.
J.
Kim
and
S.
Kang
,
J. Alloys Compd.
528
,
20
(
2012
).
17.
R.
Chang
and
L. J.
Graham
,
J. Appl. Phys.
37
,
3778
(
1966
).
18.
J. B.
Wachtman
and
D. G.
Lam
,
J. Am. Chem. Soc.
42
,
254
(
1959
).
19.
S. P.
Dodd
,
M.
Cankurtaran
, and
B.
James
,
J. Mater. Sci.
38
,
1107
(
2003
).
20.
R. H. J.
Hannink
and
M. J.
Murray
,
J. Mater. Sci.
9
,
223
(
1974
).
21.
C.
Kral
,
W.
Lengauer
,
D.
Rafaja
, and
P.
Ettmayer
,
J. Alloys Compd.
265
,
215
(
1998
).
22.
R.
Ahuja
,
O.
Eriksson
,
J. M.
Wills
, and
B.
Johansson
,
Phys. Rev. B
53
,
3072
(
1996
).
23.
J.
Li
,
Y.
Yang
,
G.
Feng
,
X.
Luo
,
Q.
Sun
, and
N.
Jin
,
J. Appl. Phys.
114
,
163522
(
2013
).
24.
A.
Arya
and
E. A.
Carter
,
J. Chem. Phys.
118
,
8982
(
2003
).
25.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
26.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
27.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
28.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
29.
M.
Methfessel
and
A. T.
Paxton
,
Phys. Rev. B
40
,
3616
(
1989
).
30.
P. E.
Blöchl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
(
1994
).
31.
S. Q.
Wang
and
H. Q.
Ye
,
J. Phys.: Condens. Matter
15
,
5307
(
2003
).
32.
R.
Yu
,
J.
Zhu
, and
H. Q.
Ye
,
Comput. Phys. Commun.
181
,
671
(
2010
).
33.
J. H.
Westbrook
and
R. L.
Fleischer
,
Intermetallic Compounds: Basic Mechanical Properties and Lattice Defects of Intermetallic Compounds
(
Wiley
,
England
,
2000
) Vol.
2
, p.
10
.
34.
D.
Strzęciwilk
,
Z.
Wokulski
, and
P.
Tkacz
,
J. Alloys Compd.
350
,
256
(
2003
).
35.
Q. F.
Gu
,
G.
Krauss
,
F.
Gramm
, and
W.
Steurer
,
J. Phys.: Condens. Matter
20
,
445226
(
2008
).
36.
J. J.
Gilman
and
B. W.
Roberts
,
J. Appl. Phys.
32
,
1405
(
1961
).
37.
Z. G.
Liu
,
J. T.
Guo
,
L. L.
Ye
,
G. S.
Li
, and
Z. Q.
Hu
,
Appl. Phys. Lett.
65
,
2666
(
1994
).
38.
S. F.
Pugh
,
Philos. Mag.
45
,
823
(
1954
).
39.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
,
J. Phys.: Condens. Matter.
21
,
084204
(
2009
).
40.
E.
Sanville
,
S. D.
Kenny
,
R.
Smith
, and
G.
Henkelman
,
J. Compd. Chem.
28
,
899
(
2007
).
41.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
Comput. Mater. Sci.
36
,
354
(
2006
).
42.
F.
Viñes
,
C.
Sousa
,
P.
Liu
,
J. A.
Rodriguez
, and
F.
Illas
,
J. Chem. Phys.
122
,
174709
(
2005
).
43.
Y.
Wang
,
J. J.
Wang
,
H.
Zhang
,
V. R.
Manga
,
S. L.
Shang
,
L. Q.
Chen
, and
Z. K.
Liu
,
J. Phys.: Condens. Matter
22
,
225404
(
2010
).
44.
Y.
Wang
and
L.
Li
,
Phys. Rev. B.
62
,
196
(
2000
).
45.
M. A.
Blanco
,
E.
Francisco
, and
V.
Luaña
,
Comput. Phys. Commun.
158
,
57
(
2004
).
46.
P.
Vinet
,
J.
Ferrante
,
J. R.
Smith
, and
J. H.
Rose
,
J. Phys. C: Solid State Phys.
19
,
L467
(
1986
).
47.
J. D.
Klerk
,
Rev. Sci. Instrum.
36
,
1540
(
1965
).
48.
G. F.
Davies
,
J. Phys. Chem. Solids
35
,
1513
(
1974
).
49.
Y. P.
Varshni
,
Phys. Rev. B
2
,
3952
(
1970
).
50.
J. B.
Wachtman
, Jr.
,
W. E.
Tefft
,
D. G.
Lam
, Jr.
, and
C. S.
Apstein
,
Phys. Rev. B
122
,
1754
(
1961
).
51.
X. H.
Yu
,
Z. J.
Lin
,
J. Z.
Zhang
,
L. P.
Wang
,
Z. J.
Ding
,
C. Q.
Jin
, and
Y. S.
Zhao
,
J. Appl. Phys.
107
,
113517
(
2010
).
You do not currently have access to this content.