A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

1.
N. J.
Quitoriano
and
T. I.
Kamins
, “
Lateral, Ge, nanowire growth on SiO2
,”
Nanotechnology
22
,
065201
(
2011
).
2.
V.
Schmidt
,
S.
Senz
, and
U.
Gösele
, “
Diameter-dependent growth direction of epitaxial silicon nanowires
,”
Nano Lett.
5
,
931
(
2005
).
3.
Y.
Wu
,
Y.
Cui
,
L.
Huynh
,
C. J.
Barrelet
,
D. C.
Bell
, and
C. M.
Lieber
, “
Controlled growth and structures of molecular-scale silicon nanowires
,”
Nano Lett.
4
,
433
(
2004
).
4.
Y.
Cui
,
L. J.
Lauhon
,
M. S.
Gudiksen
,
J.
Wang
, and
C. M.
Lieber
, “
Diameter-controlled synthesis of single-crystal silicon nanowires
,”
Appl. Phys. Lett.
78
,
2214
(
2001
).
5.
Y.
Shan
,
A. K.
Kalkan
,
C.-Y.
Peng
, and
S. J.
Fonash
, “
From Si source gas directly to positioned, electrically contacted Si nanowires: The self-assembling grow-in-place approach
,”
Nano Lett.
4
,
2085
(
2004
).
6.
A.
Pevzner
,
Y.
Engel
,
R.
Elnathan
,
A.
Tsukernik
,
Z.
Barkay
, and
F.
Patolsky
, “
Confinement-guided shaping of semiconductor nanowires and nanoribbons: writing with nanowires
,”
Nano Lett.
12
,
7
(
2012
).
7.
B.
Salem
,
F.
Dhalluin
,
H.
Abed
,
T.
Baron
,
P.
Gentile
,
N.
Pauc
, and
P.
Ferret
, “
Self-connected horizontal silicon nanowire field effect transistor
,”
Solid State Commun.
149
,
799
(
2009
).
8.
N. J.
Quitoriano
and
T. I.
Kamins
, “
Integratable nanowire transistors
,”
Nano Lett.
8
,
4410
(
2008
).
9.
A.
Lecestre
,
E.
Dubois
,
A.
Villaret
,
T.
Skotnicki
,
P.
Coronel
,
G.
Patriarche
, and
C.
Maurice
, “
Confined VLS growth and structural characterization of silicon nanoribbons
,”
Microelectron. Eng.
87
,
1522
(
2010
).
10.
J. L.
LeBoeuf
and
N. J.
Quitoriano
, “
Nucleation and solidification of laterally grown silicon micro-films on amorphous substrates using the VLS mechanism
,”
J. Cryst. Growth
391
,
1
(
2014
).
11.
E.
Dimakis
,
J.
Lahnemann
,
U.
Jahn
,
S.
Breuer
,
M.
Hilse
,
L.
Geelhaar
, and
H.
Riechert
, “
Self-assisted nucleation and vapor–solid growth of InAs nanowires on bare Si (111)
,”
Cryst. Growth Des.
11
,
4001
(
2011
).
12.
S. V.
Prikhodko
,
S.
Sitzman
,
V.
Gambin
, and
S.
Kodambaka
, “
In situ electron backscattered diffraction of individual GaAs nanowires
,”
Ultramicroscopy
109
,
133
(
2008
).
13.
V.
Randle
and
O.
Engler
,
Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping
(
CRC Press
,
2009
).
14.
F. J.
Humphreys
, “
Review grain and subgrain characterisation by electron backscatter diffraction
,”
J. Mater. Sci.
36
,
3833
(
2001
).
15.
D. G.
Brandon
,
B.
Ralph
,
S.
Ranganathan
, and
M. S.
Wald
, “
A field ion microscope study of atomic configuration at grain boundaries
,”
Acta Metall.
12
,
813
(
1964
).
16.
D. H.
Warrington
and
M.
Boon
, “
Ordered structures in random grain boundaries; some geometrical probabilities
,”
Acta Metall.
23
,
599
(
1975
).
17.
H. J.
Queisser
, “
Properties of twin boundaries in silicon
,”
J. Electrochem. Soc.
110
,
52
(
1963
).
18.
R.
Bisaro
,
J.
Magariño
,
N.
Proust
, and
K.
Zellama
, “
Structure and crystal growth of atmospheric and low-pressure chemical-vapor-deposited silicon films
,”
J. Appl. Phys.
59
,
1167
(
1986
).
19.
R.
Ishihara
,
M.
He
,
V.
Rana
,
Y.
Hiroshima
,
S.
Inoue
,
T.
Shimoda
,
J. W.
Metselaar
, and
C. I. M.
Beenakker
, “
Electrical property of coincidence site lattice grain boundary in location-controlled Si island by excimer-laser crystallization
,”
Thin Solid Films
487
,
97
(
2005
).
20.
S.
Ratanaphan
,
Y.
Yoon
, and
G. S.
Rohrer
, “
The five parameter grain boundary character distribution of polycrystalline silicon
,”
J. Mater. Sci.
49
,
4938
(
2014
).
You do not currently have access to this content.