In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

1.
R.
Yamaguchi
,
J.
Kishida
, and
S.
Sato
, “
Multicolor switching properties in fluorescent liquid crystal displays
,”
Jpn. J. Appl. Phys. Part 1
39
,
5235
5238
(
2000
).
2.
M.
Salamonczyk
,
A.
Kovarova
,
J.
Svoboda
,
D.
Pociecha
, and
E.
Gorecka
, “
Switchable fluorescent liquid crystals
,”
Appl. Phys. Lett.
95
,
171901
(
2009
).
3.
M. V.
Mukhina
,
V. V.
Danilov
,
A. O.
Orlova
,
M. V.
Fedorov
,
M. V.
Artemyev
, and
A. V.
Baranov
, “
Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template
,”
Nanotechnology
23
,
325201
(
2012
).
4.
E.
Jang
,
S.
Jun
,
H.
Jang
,
J.
Lim
,
B.
Kim
, and
Y.
Kim
, “
White-light-emitting diodes with quantum dot color converters for display backlights
,”
Adv. Mater.
22
,
3076
3080
(
2010
).
5.
T.-H.
Kim
,
K.-S.
Cho
,
E. K.
Lee
,
S. J.
Lee
,
J.
Chae
,
J. W.
Kim
,
D. H.
Kim
,
J.-Y.
Kwon
,
G.
Amaratunga
,
S. Y.
Lee
,
B. L.
Choi
,
Y.
Kuk
,
J. M.
Kim
, and
K.
Kim
, “
Full-colour quantum dot displays fabricated by transfer printing
,”
Nat. Photon.
5
,
176
182
(
2011
).
6.
P. P. C.
Verbunt
,
A.
Kaiser
,
K.
Hermans
,
C. W. M.
Bastiaansen
,
D. J.
Broer
, and
M. G.
Debije
, “
Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals
,”
Adv. Funct. Mater.
19
(
17
),
2714
2719
(
2009
).
7.
C. L.
Mulder
,
P. D.
Reusswig
,
A. M.
Velázquez
,
H.
Kim
,
C.
Rotschild
, and
M. A.
Baldo
, “
Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling
,”
Opt. Express
18
,
A79
A90
(
2010
).
8.
C. L.
Mulder
,
P. D.
Reusswig
,
A. P.
Beyler
,
H.
Kim
,
C.
Rotschild
, and
M. A.
Baldo
, “
Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers
,”
Opt. Express
18
,
A91
A99
(
2010
).
9.
M. G.
Debije
, “
Solar energy collectors with tunable transmission
,”
Adv. Funct. Mater.
20
(
9
),
1498
1502
(
2010
).
10.
R. W.
MacQueen
and
T. W.
Schmidt
, “
Molecular polarization switching for improved light coupling in luminescent solar concentrators
,”
J. Phys. Chem. Lett.
4
(
17
),
2874
2879
(
2013
).
11.
S. M.
El-Bashir
,
F. M.
Barakat
, and
M. S.
AlSalhi
, “
Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator
,”
J. Lumin.
143
,
43
49
(
2013
).
12.
W. E.
Benjamin
,
D. R.
Veit
,
M. J.
Perkins
,
E.
Bain
,
K.
Scharnhorst
,
S.
McDowall
,
D. L.
Patrick
, and
J. D.
Gilbertson
, “
Sterically engineered perylene dyes for high efficiency oriented fluorophore luminescent solar concentrators
,”
Chem. Mater.
26
(
3
),
1291
1293
(
2014
).
13.
F.
Meinardi
,
A.
Colombo
,
K. A.
Velizhanin
,
R.
Simonutti
,
M.
Lorenzon
,
L.
Beverina
,
R.
Viswanatha
,
V. I.
Klimov
, and
S.
Brovelli
, “
Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix
,”
Nat. Photon.
8
,
392
399
(
2014
).
14.
C. S.
Erickson
,
L. R.
Bradshaw
,
S.
McDowall
,
J. D.
Gilbertson
,
D. R.
Gamelin
, and
D. L.
Patrick
, “
Zero-reabsorption doped-nanocrystal luminescent solar concentrators
,”
ACS Nano
8
(
4
),
3461
3467
(
2014
).
15.
J.
Frischeisen
,
D.
Yokoyama
,
C.
Adachi
, and
W.
Brütting
, “
Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements
,”
Appl. Phys. Lett.
96
,
73302
(
2010
).
16.
S.
Nowy
,
B. C.
Krummacher
,
J.
Frischeisen
,
N. A.
Reinke
, and
W.
Brütting
, “
Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency
,”
J. Appl. Phys.
104
,
123109
(
2008
).
17.
M.
Honma
,
S.
Yamamoto
, and
T.
Nose
, “
Simple optical modeling of polarized fluorescent liquid crystal cells
,”
Opt. Rev.
20
(
4
),
332
337
(
2013
).
18.
E.
Hecht
,
Optics
, 4th ed. (
Addison Wesley
,
San Francisco
,
2002
), p.
62
.
19.
R. W.
MacQueen
,
Y. Y.
Cheng
,
R. G. C. R.
Clady
, and
T. W.
Schmidt
, “
Towards an aligned luminophore solar concentrator
,”
Opt. Express
18
,
A161
A166
(
2010
).
20.
P. P. C.
Verbunt
,
T. M.
de Jong
,
D. K. G.
de Boer
,
D. J.
Broer
, and
M. G.
Debije
, “
Anisotropic light emission from aligned luminophores
,”
Eur. Phys. J. Appl. Phys.
67
,
10201
(
2014
).
You do not currently have access to this content.