We present a novel semiconducting alloy, silicon-tin (SiSn), as channel material for complementary metal oxide semiconductor (CMOS) circuit applications. The material has been studied theoretically using first principles analysis as well as experimentally by fabricating MOSFETs. Our study suggests that the alloy offers interesting possibilities in the realm of silicon band gap tuning. We have explored diffusion of tin (Sn) into the industry's most widely used substrate, silicon (100), as it is the most cost effective, scalable and CMOS compatible way of obtaining SiSn. Our theoretical model predicts a higher mobility for p-channel SiSn MOSFETs, due to a lower effective mass of the holes, which has been experimentally validated using the fabricated MOSFETs. We report an increase of 13.6% in the average field effect hole mobility for SiSn devices compared to silicon control devices.

1.
L. B.
Kish
,
AIP Conf. Proc.
665
(
1
),
469
(
2003
).
2.
M.
Bohr
, in
Tech. Dig. - Int. Electron Devices Meet.
2011
,
1.1.1
1.1.6
.
3.
A. M.
Hussain
,
G. A. T.
Sevilla
,
K. R.
Rader
, and
M. M.
Hussain
, in
Saudi International Electronics, Communications and Photonics Conference (SIECPC)
(
IEEE
,
Riyadh, Saudi Arabia
,
2013
), pp.
1
5
.
4.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
(
5696
),
666
(
2004
).
5.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
(
3
),
147
(
2011
).
6.
A.
Nainani
,
B. R.
Bennett
,
J. B.
Boos
,
M. G.
Ancona
, and
K. C.
Saraswat
,
J. Appl. Phys.
111
(
10
),
103706
(
2012
).
7.
R. E.
Jones
,
S. X.
Li
,
E. E.
Haller
,
H. C. M.
van Genuchten
,
K. M.
Yu
,
J. W.
Ager
,
Z.
Liliental-Weber
,
W.
Walukiewicz
,
H.
Lu
, and
W. J.
Schaff
,
Appl. Phys. Lett.
90
(
16
),
162103
(
2007
).
8.
S.
Rajan
,
S. P.
DenBaars
,
U. K.
Mishra
,
H.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
88
(
4
),
042103
(
2006
).
9.
A. N.
Hanna
,
M. T.
Ghoneim
,
R. R.
Bahabry
,
A. M.
Hussain
, and
M. M.
Hussain
,
Appl. Phys. Lett.
103
(
22
),
224101
(
2013
).
10.
S. J.
Wind
,
J.
Appenzeller
,
R.
Martel
,
V.
Derycke
, and
Ph.
Avouris
,
Appl. Phys. Lett.
80
(
20
),
3817
(
2002
).
11.
N.
Amrane
,
S. A.
Abderrahmane
, and
H.
Aourag
,
Infrared Phys. Technol.
36
(
5
),
843
(
1995
).
12.
A.
Zaoui
,
M.
Ferhat
,
M.
Certier
,
B.
Khelifa
, and
H.
Aourag
,
Infrared Phys. Technol.
37
(
4
),
483
(
1996
).
13.
V. S. J.
Rasmus
,
G. P.
Thomas
, and
N. L.
Arne
,
J. Phys.: Condens. Matter
23
(
34
),
345501
(
2011
).
14.
J.
Franco
,
B.
Kaczer
,
J.
Mitard
,
M.
T.-Luque
,
F.
Crupi
,
G.
Eneman
,
P. J.
Roussel
,
T.
Grasser
,
M.
Cho
,
T.
Kauerauf
,
L.
Witters
,
G.
Hellings
,
L.
Ragnarsson
,
N.
Horiguchi
,
M.
Heyns
, and
G.
Groeseneken
, in
IEEE International Conference on IC Design & Technology (ICICDT), 2012 , Austin, USA
(
IEEE
,
2012
), pp.
1
4
.
15.
H.
Genquan
,
S.
Shaojian
,
W.
Lanxiang
,
W.
Wei
,
G.
Xiao
,
Y.
Yue
,
Ivana
,
G.
Pengfei
,
G.
Cheng
,
Z.
Guangze
,
P.
Jisheng
,
Z.
Zheng
,
X.
Chunlai
,
C.
Buwen
, and
Y.
Y.-Chia
,
Tech. Dig. Pap. Symp. VLSI Technol.
2012
,
97
98
.
16.
S.
Gupta
,
B.
Vincent
,
D. H. C.
Lin
,
M.
Gunji
,
A.
Firrincieli
,
F.
Gencarelli
,
B.
Magyari-Kope
,
B.
Yang
,
B.
Douhard
,
J.
Delmotte
,
A.
Franquet
,
M.
Caymax
,
J.
Dekoster
,
Y.
Nishi
, and
K. C.
Saraswat
,
Tech. Dig. Pap. Symp. VLSI Technol.
2012
,
95
96
.
17.
C.-C.
Li
,
K.-S.
C.-Liao
,
C.-H.
Fu
,
T.-H.
Tzeng
,
C.-C.
Lu
,
H.-Z.
Hong
,
T.-C.
Chen
,
T.-K.
Wang
,
W.-F.
Tsai
, and
C.-F.
Ai
,
Solid-State Electron.
78
,
17
(
2012
).
18.
S.
Gupta
,
R.
Chen
,
B.
M.-Kope
,
H.
Lin
,
Y.
Bin
,
A.
Nainani
,
Y.
Nishi
,
J. S.
Harris
, and
K. C.
Saraswat
, in
Tech. Dig. Int. Electron Devices Meet.
2011
,
16.6.1
16.6.4
.
19.
A. M.
Hussain
,
H. M.
Fahad
,
N.
Singh
,
G. A. T.
Sevilla
,
U.
Schwingenschlögl
, and
M. M.
Hussain
,
Phys. Status Solidi (RRL)
8
,
332
(
2014
).
20.
A. M.
Hussain
,
H. M.
Fahad
,
N.
Singh
,
G. A.
Torres Sevilla
,
U.
Schwingenschlögl
, and
M. M.
Hussain
, in
IEEE 8th Nanotechnology Materials and Devices Conference (NMDC), 2013, Tainan, Taiwan
(
IEEE
,
2013
), pp.
13
15
.
21.
A. M.
Hussain
,
H. M.
Fahad
,
N.
Singh
,
K. R.
Rader
,
G. A. T.
Sevilla
,
U.
Schwingenschlögl
, and
M. M.
Hussain
, in
71st Annual Device Research Conference (DRC), Notre Dame, USA
(IEEE,
2013
), pp.
93
94
.
22.
F.
Tran
and
P.
Blaha
,
Phys. Rev. Lett.
102
(
22
),
226401
(
2009
).
23.
D. J.
Singh
,
Phys. Rev. B
82
(
20
),
205102
(
2010
).
24.
A. R.
Denton
and
N. W.
Ashcroft
,
Phys. Rev. A
43
(
6
),
3161
(
1991
).
25.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors: Physics and Materials Properties
(
Springer
,
2005
), p.
206
.
26.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
John Wiley and Sons
,
2006
) p.
489
.
27.
T.
Ghani
,
M.
Armstrong
,
C.
Auth
,
M.
Bost
,
P.
Charvat
,
G.
Glass
,
T.
Hoffmann
,
K.
Johnson
,
C.
Kenyon
,
J.
Klaus
,
B.
McIntyre
,
K.
Mistry
,
A.
Murthy
,
J.
Sandford
,
M.
Silberstein
,
S.
Sivakumar
,
P.
Smith
,
K.
Zawadzki
,
S.
Thompson
, and
M.
Bohr
,
Tech. Dig. – Int. Electron Devices Meet.
2003
,
11.6.1
11.6.3
.
28.
Y.-C.
Yeo
,
ECS Trans.
3
(
7
),
1143
(
2006
).
29.
M. L.
Lee
,
E. A.
Fitzgerald
,
M. T.
Bulsara
,
M. T.
Currie
, and
A.
Lochtefeld
,
J. Appl. Phys.
97
(
1
),
011101
(
2005
).
30.
S.
Fatima
,
J.
Wong-Leung
,
J. F.
Gerald
, and
C.
Jagadish
,
Appl. Phys. Lett.
74
(
8
),
1141
(
1999
).
31.
J.
Wong-Leung
,
S.
Fatima
,
C.
Jagadish
,
J. D.
Fitz Gerald
,
C. T.
Chou
,
J.
Zou
, and
D. J. H.
Cockayne
,
J. Appl. Phys.
88
(
3
),
1312
(
2000
).
You do not currently have access to this content.