In this contribution, based on the detailed understanding of the processes at the target during reactive high power impulse magnetron sputtering (HiPIMS), we demonstrate the deposition of both low- and high-index films and their implementation in optical interference filters with enhanced performance. We first investigate strategies for stabilizing the arc-free HiPIMS discharges above Si and Ta targets in the presence of oxygen. We show that hysteresis can be suppressed for these two target materials by suitable pulse-management strategies, ensuring good process stability without having to rely on any feedback control. Afterwards, we discuss the room temperature deposition of optically transparent SiO2 and Ta2O5 single layers as well as the fabrication of SiO2/Ta2O5 stacks such as 7 layer Bragg reflectors and 11 layer Fabry-Perot interference filters. We also analyze the optical and mechanical characteristics of these various coatings and compare them with their counterparts obtained by radio-frequency magnetron sputtering (RFMS). Among other findings, we observe that the coatings prepared by HiPIMS present higher refractive index and lower surface roughness values, suggesting a denser microstructure. In addition, the HiPIMS-deposited optical filters exhibit a better optical performance than their counterparts fabricated by RFMS, but it is especially with respect to the mechanical properties such as scratch resistance and low residual stress, that the coatings prepared by HiPIMS present the most dramatic improvements (up to 42% and 72% enhancement, respectively). Finally, we show that the stress values obtained for the HiPIMS-deposited SiO2 and Ta2O5 coatings are lower than for other deposition techniques commonly used in the fabrication of optical interference filters.
Skip Nav Destination
Article navigation
7 December 2014
Research Article|
December 05 2014
Reactive HiPIMS deposition of SiO2/Ta2O5 optical interference filters
Matěj Hála;
Matěj Hála
Department of Engineering Physics,
Thin Film Research Center–GCM
, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
Search for other works by this author on:
Richard Vernhes;
Richard Vernhes
Department of Engineering Physics,
Thin Film Research Center–GCM
, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
Search for other works by this author on:
Oleg Zabeida;
Oleg Zabeida
Department of Engineering Physics,
Thin Film Research Center–GCM
, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
Search for other works by this author on:
Jolanta-Ewa Klemberg-Sapieha;
Jolanta-Ewa Klemberg-Sapieha
Department of Engineering Physics,
Thin Film Research Center–GCM
, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
Search for other works by this author on:
Ludvik Martinu
Ludvik Martinu
c)
Department of Engineering Physics,
Thin Film Research Center–GCM
, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
Search for other works by this author on:
b)
Present address: Laboratory for Photovoltaics, Physics and Materials Science Research Unit, Université du Luxembourg, 41, rue du Brill, L-4422 Belvaux, Luxembourg.
J. Appl. Phys. 116, 213302 (2014)
Article history
Received:
August 31 2014
Accepted:
November 21 2014
Citation
Matěj Hála, Richard Vernhes, Oleg Zabeida, Jolanta-Ewa Klemberg-Sapieha, Ludvik Martinu; Reactive HiPIMS deposition of SiO2/Ta2O5 optical interference filters. J. Appl. Phys. 7 December 2014; 116 (21): 213302. https://doi.org/10.1063/1.4903285
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00