Er-substituted cobalt-ferrites CoFe2−xErxO4 (0 ≤ x ≤ 0.04) were synthesized by sol-gel assisted auto-combustion method. The precursor powders were calcined at 673–873 K for 4 h, subsequently pressed into pellets and sintered at 1273 K for 4 h. X-ray diffraction (XRD) confirmed the presence of the spinel phase for all the compositions and, additional orthoferrite phase for higher compositions (x = 0.03 and 0.04). The XRD spectra and the Transmission Electron Microscopy micrographs indicate that the nanocrystalline particulates of the Er-substituted cobalt ferrites have crystallite size of ∼120–200 nm. The magnetization curves show an increase in saturation magnetization (MS) and coercivity (HC) for Er-substituted cobalt-ferrites at sub-ambient temperatures. MS for CoFe2O4, CoFe0.99Er0.01O4, CoFe0.98Er0.02O4, and CoFe0.97Er0.03O4 peak at 89.7 Am2/kg, 89.3 Am2/kg, 88.8 Am2/kg, and 87.1 Am2/kg, respectively, at a sub-ambient temperature of ∼150 K. HC substantially increases with decrease in temperature for all the compositions, while it peaks at x = 0.01−0.02 at all temperatures. The combination of Er content—x ∼ 0.02 and the temperature—∼5 K provides the maximum HC ∼ 984 kA/m. Er-substituted cobalt-ferrites have higher cubic anisotropy constant, K1, compared to pure cobalt-ferrite at ambient/sub-ambient temperatures. K1 gradually increases for all compositions in the temperature decreasing from 300 to 100 K. While K1 peaks at ∼150 K for pure cobalt-ferrite, it peaks at ∼50 K for CoFe0.99Er0.01O4, CoFe0.98Er0.02O4, and CoFe0.96Er0.04O4. The MS (∼88.7 Am2/kg), at 5 K, for Er substituted cobalt-ferrite is close to the highest values reported for Sm and Gd substituted cobalt-ferrites. The MS (∼83.5 Am2/kg) at 300 K for Er-substituted cobalt-ferrite is the highest among the lanthanide series element substituted cobalt-ferrites. The HC (at 5 K) for Er substituted cobalt-ferrite is close to the highest values observed for La, Ce, Nd, Sm, and Gd substituted cobalt-ferrites.

1.
N.
Moumen
and
M. P.
Pileni
,
Chem. Mater.
8
(
5
),
1128
1134
(
1996
).
2.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to Magnetic Materials
(
Wiley/IEEE
,
NJ, USA
,
2009
).
3.
D. C.
Jiles
and
C. C. H.
Lo
,
Sens. Actuators, A
106
,
3
7
(
2003
).
4.
J. A.
Paulsen
,
A. P.
Ring
,
C. C. H.
Lo
,
J. E.
Snyder
, and
D. C.
Jiles
,
J. Appl. Phys.
97
,
044502
(
2005
).
5.
H.
Srikanth
and
J.
Gass
, in
Proceedings of the 2nd International Conference Nanomaterials and Nanotechnologies
, edited by
I.
Ovid'ko
(Crete, Greece June 14–18, 2005), Vol. 10, Number 5, Page. 398; available at http://www.ipme.ru/e-journals/RAMS/no_51005/a.pdf.
6.
Y.
Yin
and
A. P.
Alivisatos
,
Nature
437
,
664
670
(
2005
).
7.
M. A. G.
Soler
,
E. C. D.
Lima
,
S. W.
Silva
,
T. F. O.
Melo
,
A. C. M.
Pimenta
,
J. P.
Sinnecker
,
R. B.
Azevedo
, and
K.
Vijayendra
,
Langmuir
23
(
19
),
9611
9617
(
2007
).
8.
B. Y.
Geng
,
J. Z.
Ma
,
X. W.
Liu
,
Q. B.
Du
,
M. G.
Kong
, and
L. D.
Zhang
,
Appl. Phys. Lett.
90
,
043120
043123
(
2007
).
9.
C.
Vázquez-Vázquez
,
M.
Lovelle
,
C.
Mateo
,
M. A.
López-Quintela
,
M. C.
Buján-Núñez
,
D.
Serantes
,
D.
Baldomir
, and
J.
Rivas
,
Phys. Status. Solidi A
205
,
1358
1362
(
2008
).
10.
A. H.
Habib
,
C. L.
Ondeck
,
P.
Chaudhary
,
M. R.
Bockstaller
, and
M. E.
McHenry
,
J. Appl. Phys.
103
,
07A307
(
2008
).
11.
T. L.
Templeton
,
A. S.
Arrott
,
A. E.
Curzon
,
M. A.
Gee
,
X. Z.
Li
,
Y.
Yoshida
,
P. J.
Schurer
, and
J. L.
LaCombe
,
J. Appl. Phys.
73
,
6728
(
1993
).
12.
G. A.
Sawatzky
,
F.
Van der Woude
, and
A. H.
Morrish
,
J. Appl. Phys.
39
,
1204
(
1968
).
13.
J. C.
Waerenborgh
,
M. O.
Figueiredo
,
J. M. P.
Cabral
, and
L. C. J.
Pereira
,
J. Solid State Chem.
111
,
300
309
(
1994
).
14.
S. D.
Bhame
and
P. A.
Joy
,
J. Appl. Phys.
99
,
073901
(
2006
).
15.
K.
Krieble
,
C. C. H.
Lo
,
Y.
Melikhov
, and
J. E.
Snyder
,
J. Appl. Phys.
99
,
08M912
(
2006
).
16.
Y.
Melikhov
,
J. E.
Snyder
,
D. C.
Jiles
,
A. P.
Ring
,
J. A.
Paulsen
,
C. C. H.
Lo
, and
K. W.
Dennis
,
J. Appl. Phys.
99
,
08R102
(
2006
).
17.
N.
Somaiah
,
T. V.
Jayaraman
,
P. A.
Joy
, and
D.
Das
,
J. Magn. Magn. Mater.
324
(
14
),
2286
(
2012
).
18.
S. H.
Song
,
C. C. H.
Lo
,
S. J.
Lee
,
S. T.
Aldini
,
J. E.
Snyder
, and
D. C.
Jiles
,
J. Appl. Phys.
101
,
09C517
(
2007
).
19.
C.
Nlebedim
,
N.
Ranvah
,
Y.
Melikhov
,
P. I.
Williams
,
J. E.
Snyder
,
A. J.
Moses
, and
D. C.
Jiles
,
J. Appl. Phys.
107
,
09A936
(
2010
).
20.
F.
Cheng
,
J.
Jia
,
Z.
Xu
,
B.
Zhou
, and
C.
Liao
,
J. Appl. Phys.
86
,
2727
(
1999
).
21.
F.
Cheng
,
C.
Liao
,
J.
Kuang
,
Z.
Xu
, and
C.
Yan
,
J. Appl. Phys.
85
(
5
),
2782
(
1999
).
22.
R. N.
Panda
,
J. C.
Shih
, and
T. S.
Chin
,
J. Magn. Magn. Mater.
257
,
79
86
(
2003
).
23.
L.
Zhao
,
H.
Yang
,
X.
Zhao
,
L.
Yu
,
Y.
Cui
, and
S.
Feng
,
Mater. Lett.
60
,
1
6
(
2006
).
24.
L. Ben
Tahar
,
A.
Artus
,
S.
Ammar
,
L. S.
Smiri
,
F.
Herbst
,
M. J.
Vaulay
,
V.
Richard
,
J. M.
Greneche
,
F.
Villian
, and
F.
Fievet
,
J. Magn. Magn. Mater.
320
,
3242
3250
(
2008
).
25.
M. M.
Rashad
,
R. M.
Mohamed
, and
H.
El-Shall
,
J. Mater. Process. Technol.
198
,
139
146
(
2008
).
26.
E.
Pervaiz
and
I. H.
Gul
, in
Proceedings of the 6th Vacuum and Surface Science Conference of Asia and Australia (VASSCAA-6)
[
J. Phys.: Conf. Ser.
439
,
012015
(
2013
)].
27.
S.
Xavier
,
S.
Thankachan
,
B. P.
Jacob
, and
E. M.
Mohammed
,
J. Nano. Sci.
2013
,
1
7
.
28.
G.
Dascalu
,
G.
Pompilian
,
B.
Chazallon
,
V.
Nica
,
O. F.
Caltun
,
S.
Gurlui
, and
C.
Focsa
,
Appl. Phys. A.
110
,
915
922
(
2013
).
29.
G.
Dascalu
,
D.
Durneata
, and
O.
Florin
,
IEEE Trans. Magn.
49
(
1
),
46
49
(
2013
).
30.
S.
Prathapani
,
M.
Vinitha
,
T. V.
Jayaraman
, and
D.
Das
,
J. Appl. Phys.
115
,
17A502-1
17A502-3
(
2014
).
31.
A. K.
Nikumbh
,
R. A.
Pawar
,
D. V.
Nighot
,
G. S.
Gugale
,
M. D.
Sangle
,
M. B.
Khanvilkar
, and
A. V.
Nagawade
,
J. Magn. Magn. Mater.
355
,
201
209
(
2014
).
32.
A.
Goldman
,
Modern Ferrite Technology
, 2nd ed. (
Springer Science Business Media Inc.
,
2006
), Chap. 4.
33.
M.
Sorescu
,
A.
Grabias
,
D.
Tarabasanu-Mihala
, and
L.
Diamandescu
,
J. Mater. Synth. Process.
9
(
3
),
119
123
(
2001
).
34.
W.
Bayoumi
,
J. Mater. Sci.
42
(
19
),
8254
8261
(
2007
).
35.
M. R. De
Guire
,
R. C.
O'Handley
, and
G.
Kalonji
,
J. Appl. Phys.
65
,
3167
(
1989
).
36.
K. C.
Patil
,
S. T.
Aruna
, and
T.
Mimani
,
Curr. opin. Solid State Mater. Sci.
6
,
507
512
(
2002
).
37.
L. Ben
Tahar
,
L. S.
Smiri
,
M.
Artus
,
A. L.
Joudrier
,
F.
Herbst
,
M. J.
Vaulay
,
S.
Ammar
, and
F.
Fievert
,
Mater. Res. Bull.
42
,
1888
(
2007
).
38.
W. C.
Kim
,
S. W.
Lee
,
S. J.
Kim
,
S. H.
Yoon
, and
C. S.
Kim
,
J. Magn. Magn. Mater.
215–216
,
217
(
2000
).
39.
S. R.
Naik
and
A. V.
Salker
,
J. Mater. Chem.
22
,
2740
2750
(
2012
).
40.
T. V.
Albu
,
I.
Mindru
,
L.
Patron
,
E.
Segal
, and
M.
Brezeanu
,
Thermochim. Acta
340–341
(
1
),
235
240
(
1999
).
41.
V.
Buzko
,
I.
Sukhno
, and
V.
Klimova
,
Acta Chim. Slov.
51
,
203
211
(
2004
); available at http://acta.chem-soc.si/51/graph/51-2-graph.htm.
42.
R. A.
Young
and
D. B.
Wiles
,
J. Appl. Crystallogr.
15
,
430
(
1982
).
43.
B. D.
Cullity
and
S. R.
Stock
,
Elements of x-ray Diffraction
(
Prentice-Hall
,
Upper Saddle River, NJ
,
2001
).
44.
C.
Yan
,
F.
Cheng
,
C.
Liao
,
J.
Kuang
,
Z.
Xu
,
L.
Chen
,
H.
Zhao
,
Z.
Liu
,
Y.
Wang
,
T.
Zhu
, and
G.
He
,
J. Magn. Magn. Mater.
192
,
396
(
1999
).
45.
R. J.
Hill
,
J. R.
Craig
, and
G. V.
Gibbs
,
Phys. Chem. Miner.
4
,
317
(
1979
).
46.
H. S.
O'Neil
and
A.
Navrotsky
,
Am. Mineral.
68
,
181
(
1983
); available at http://www.minsocam.org/msa/collectors_corner/amtoc/toc1983.htm.
47.
R. D.
Shannon
,
Acta. Crystallogr. A
32
,
751
(
1976
).
48.
P.
Chandramohan
,
M. P.
Srinivasan
,
P.
Velmurugan
, and
S. V.
Narasimhan
,
J. Solid State Chem.
184
(
1
),
89
96
(
2011
).
49.
R.
Nongjai
,
S.
Khan
,
K.
Asokan
,
H.
Ahmed
, and
I.
Khan
,
J. Appl. Phys.
112
,
084321
(
2012
).
50.
B. H.
Frazer
,
J. R.
Gebhardt
, and
N.
Ali
,
J. Appl. Phys.
85
,
6100
(
1999
).
51.
L. T.
Tsymbal
,
Ya. B.
Bazaliy
,
G. N.
Kakazei
, and
S. V.
Vasiliev
,
J. Appl. Phys.
108
,
083906
(
2010
).
52.
L.
Holmes
,
L. G.
Van Uitert
, and
R.
Hecker
,
J. Appl. Phys.
42
(
2
),
657
(
1971
).
53.
A. I.
Belyaeva
and
E. V.
Baranova
,
J. Exp. Theor. Phys.
105
,
94
98
(
2007
).
54.
N.
Ranvah
,
Y.
Melikhov
,
D. C.
Jiles
,
J. E.
Snyder
,
A. J.
Moses
,
P. I.
Williams
, and
S. H.
Song
,
J. Appl. Phys.
103
,
07E506
(
2008
).
55.
M.
Kriegisch
,
W.
Ren
,
R.
Sato-Turtelli
,
H.
Muller
,
R.
Gossinger
, and
Z.
Zhang
,
J. Appl. Phys.
111
,
07E308
(
2012
).
56.
M. L.
Kahn
and
Z. J.
Zhang
,
Appl. Phys. Lett.
78
(
23
),
3651
(
2001
).
57.
S.
Chikazumi
,
Physics of Ferromagnetism
, 2nd ed. (
Oxford University Press
,
Oxford
,
1997
), pp.
503
508
.
58.
J.
Smit
,
Ferrites
(
Wiley
,
New York
,
1959
), p.
163
.
59.
60.
M.
Tachiki
,
Prog. Theor. Phys.
23
,
1055
(
1960
).
You do not currently have access to this content.