Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (IIIVq) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (VIIIq) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, IIIVq defects dominate under III-rich conditions and VIIIq under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.

1.
See http://www.itrs.net/ for The international technology roadmap for semiconductors.
2.
J. A. del
Alamo
,
Nature (London)
479
,
317
(
2011
).
3.
L.
Lin
and
J.
Robertson
,
Appl. Phys. Lett.
98
,
082903
(
2011
).
4.
A.
Chroneos
and
H.
Bracht
,
J. Appl. Phys.
104
,
093714
(
2008
).
5.
J. L.
Roehl
,
A.
Kolagatla
,
V. K. K.
Gangur
,
S. V.
Khare
, and
R. J.
Phaneuf
,
Phys. Rev. B
82
,
165335
(
2010
).
6.
S. T.
Murphy
,
A.
Chroneos
,
C.
Jiang
,
U.
Schwingenschlögl
, and
R. W.
Grimes
,
Phys. Rev. B
82
,
073201
(
2010
);
S. T.
Murphy
,
A.
Chroneos
,
R. W.
Grimes
,
C.
Jiang
, and
U.
Schwingenschlogl
,
Phys. Rev. B
84
,
184108
(
2011
).
7.
J. L.
Rohl
,
S.
Aravelli
,
S. V.
Khare
, and
R. J.
Phaneuf
,
Surf. Sci.
606
,
1303
(
2012
).
8.
S.
Adachi
,
Physical Properties of III-V Semiconductor Compounds
(
Wiley
,
1992
).
9.
H.
Bracht
,
S. P.
Nicols
,
W.
Walukiewicz
,
J. P.
Silveira
,
F.
Briones
, and
E. E.
Haller
,
Nature (London)
408
,
69
(
2000
).
10.
H.
Bracht
,
S. P.
Nicols
,
E. E.
Haller
,
J. P.
Silveira
, and
F.
Briones
,
J. Appl. Phys.
89
,
5393
(
2001
).
11.
H.
Bracht
and
S.
Brotzmann
,
Phys. Rev. B
71
,
115216
(
2005
).
12.
H. A.
Tahini
,
A.
Chroneos
,
H.
Bracht
,
S. T.
Murphy
,
R. W.
Grimes
, and
U.
Schwingenschlögl
,
Appl. Phys. Lett.
103
,
142107
(
2013
).
13.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
14.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
15.
E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
16.
H. A.
Tahini
,
A.
Chroneos
,
S. T.
Murphy
,
U.
Schwingenschlögl
, and
R. W.
Grimes
,
J. Appl. Phys.
114
,
063517
(
2013
).
18.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
19.
S. B.
Zhang
and
J. E.
Northrup
,
Phys. Rev. Lett.
67
,
2339
(
1991
).
20.
F.
El-Mellouhi
and
N.
Mousseau
,
Phys. Rev. B
71
,
125207
(
2005
).
21.
C.
Freysoldt
,
J.
Neugebauer
, and
C. G. Van de
Walle
,
Phys. Rev. Lett.
102
,
16402
(
2009
).
22.
C.
Freysoldt
,
J.
Neugebauer
, and
C. G. Van de
Walle
,
Phys. Status Solidi B
248
,
1067
(
2011
).
23.
S.
Pöykkö
,
M. J.
Puska
, and
R. M.
Nieminen
,
Phys. Rev. B
53
,
3813
(
1996
).
24.
J. E.
Northrup
and
S. B.
Zhang
,
Phys. Rev. B
50
,
4962
(
1994
).
25.
P. A.
Schultz
and
O. A. von
Lilienfeld
,
Modell. Simul. Mater. Sci. Eng.
17
,
84007
(
2009
).
26.
M.
Hakala
,
M.
Puska
, and
R.
Nieminen
,
J. Appl. Phys.
91
,
4988
(
2002
).
27.
C. W. M.
Castleton
and
S.
Mirbt
,
Phys. Rev. B
70
,
195202
(
2004
).
28.
R.
Mishra
,
O.
Restrepo
,
A.
Kumar
, and
W.
Windl
,
J. Mater. Sci.
47
,
7482
(
2012
).
You do not currently have access to this content.