We propose a scheme of multilayer thermoelectric engine where one electric current is coupled to two temperature gradients in three-terminal geometry. This is realized by resonant tunneling through quantum dots embedded in two thermal and electrical resisting polymer matrix layers between highly conducting semiconductor layers. There are two thermoelectric effects, one of which is pertaining to inelastic transport processes (if energies of quantum dots in the two layers are different), while the other exists also for elastic transport processes. These two correspond to the transverse and longitudinal thermoelectric effects, respectively, and are associated with different temperature gradients. We show that cooperation between the two thermoelectric effects leads to markedly improved figure of merit and power factor, which is confirmed by numerical calculation using material parameters. Such enhancement is robust against phonon heat conduction and energy level broadening. Therefore, we demonstrated cooperative effect as an additional way to effectively improve performance of thermoelectrics in three-terminal geometry.

1.
T. C.
Harman
and
J. M.
Honig
,
Thermoelectric and Thermomagnetic Effects and Applications
(
McGraw-Hill
,
New-York
,
1967
);
H. J.
Goldsmid
,
Introduction to Thermoelectricity
(
Springer
,
Heidelberg
,
2009
).
2.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
,
105
(
2008
);
[PubMed]
T. M.
Tritt
,
Annu. Rev. Mater. Res.
41
,
433
(
2011
).
3.
G. J.
Snyder
and
T. S.
Ursell
,
Phys. Rev. Lett.
91
,
148301
(
2003
).
4.
R.
Venkatasubramanian
,
Phys. Rev. B
61
,
3091
(
2000
);
J.-K.
Yu
,
S.
Mitrovic
,
D.
Tham
,
J.
Varghese
, and
J. R.
Heath
,
Nat. Nanotechnol.
5
,
718
(
2010
);
[PubMed]
N.
Nakpathomkun
,
H. Q.
Xu
, and
H.
Linke
,
Phys. Rev. B
82
,
235428
(
2010
);
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O'Quinn
,
Nature
413
,
597
(
2001
).
[PubMed]
5.
A. I.
Boukai
 et al.,
Nature
451
,
168
(
2008
);
[PubMed]
P.
Pichanusakorn
and
P.
Bandaru
,
Mater. Sci. Eng., R
67
,
19
(
2010
);
A. J.
Minnich
,
M. S.
Dresselhaus
,
Z. F.
Ren
, and
G.
Chen
,
Energy Environ. Sci.
2
,
466
(
2009
);
C. J.
Vineis
,
A.
Shakouri
,
A.
Majumdar
, and
M. G.
Kanatzidis
,
Adv. Mater.
22
,
3970
(
2010
);
[PubMed]
Z.-G.
Chen
,
G.
Han
,
L.
Yang
,
L.
Cheng
, and
J.
Zou
,
Prog. Nat. Sci.
22
,
535
(
2012
);
J.-F.
Li
,
W.-S.
Liu
,
L.-D.
Zhao
, and
M.
Zhou
,
NPG Asia Mater.
2
,
152
(
2010
).
6.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R.
Yang
,
H.
Lee
,
D.
Wang
,
Z.
Ren
,
J.-P.
Fleurial
, and
P.
Gogna
,
Adv. Mater.
19
,
1043
(
2007
).
7.
U.
Sivan
and
Y.
Imry
,
Phys. Rev. B
33
,
551
(
1986
).
8.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
);
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
16631
(
1993
).
9.
G. D.
Mahan
and
J. O.
Sofo
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
7436
(
1996
).
10.
T. E.
Humphrey
,
R.
Newbury
,
R. P.
Taylor
, and
H.
Linke
,
Phys. Rev. Lett.
89
,
116801
(
2002
);
[PubMed]
T. E.
Humphrey
and
H.
Linke
,
Phys. Rev. Lett.
94
,
096601
(
2005
).
[PubMed]
11.
P.
Kim
,
L.
Shi
,
A.
Majumdar
, and
P. L.
McEuen
,
Phys. Rev. Lett.
87
,
215502
(
2001
);
[PubMed]
D.
Li
,
Y.
Wu
,
P.
Kim
,
L.
Shi
,
P.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
,
2934
(
2003
);
J.
Hone
,
M.
Whitney
,
C.
Piskoti
, and
A.
Zettl
,
Phys. Rev. B
59
,
R2514
(
1999
);
C.
Yu
,
L.
Shi
,
Z.
Yao
,
D.
Li
, and
A.
Majumdar
,
Nano Lett.
5
,
1842
(
2005
).
[PubMed]
12.
F.
Giazotto
,
T. T.
Heikkilä
,
A.
Luukanen
,
A. M.
Savin
, and
J. P.
Pekola
,
Rev. Mod. Phys.
78
,
217
(
2006
).
13.
Thermoelectric Nanomaterials
, edited by
K.
Koumoto
and
T.
Mori
(
Springer-Verlag
,
Berlin
,
2013
).
14.
S. L.
Korylyuk
 et al.,
Sov. Phys. Semicond.
7
,
502
(
1973
);
V. P.
Babin
 et al.,
Sov. Phys. Semicond.
8
,
478
(
1974
);
A.
Kyarad
and
H.
Lengfellner
,
Appl. Phys. Lett.
89
,
192103
(
2006
);
C.
Reitmaier
,
F.
Walther
, and
H.
Lengfellner
,
Appl. Phys. A
99
,
717
(
2010
);
H. J.
Goldsmid
,
J. Electron. Mater.
40
,
1254
(
2011
).
15.
S.
Zippilli
,
G.
Morigi
, and
A.
Bachtold
,
Phys. Rev. Lett.
102
,
096804
(
2009
);
[PubMed]
B.
Rutten
,
M.
Esposito
, and
B.
Cleuren
,
Phys. Rev. B
80
,
235122
(
2009
).
16.
O.
Entin-Wohlman
,
Y.
Imry
, and
A.
Aharony
,
Phys. Rev. B
82
,
115314
(
2010
).
17.
R.
Sánchez
and
M.
Büttiker
,
Phys. Rev. B
83
,
085428
(
2011
);
B.
Sothmann
,
R.
Sánchez
, and
A. N.
Jordan
, e-print arXiv:1406.5329.
18.
B.
Sothmann
,
R.
Sánchez
,
A. N.
Jordan
, and
M.
Büttiker
,
Phys. Rev. B
85
,
205301
(
2012
).
19.
J.-H.
Jiang
,
O.
Entin-Wohlman
, and
Y.
Imry
,
Phys. Rev. B
85
,
075412
(
2012
).
20.
T.
Ruokola
and
T.
Ojanen
,
Phys. Rev. B
86
,
035454
(
2012
).
21.
B.
Sothmann
and
M.
Büttiker
,
Europhys. Lett.
99
,
27001
(
2012
).
22.
L.
Simine
and
D.
Segal
,
Phys. Chem. Chem. Phys.
14
,
13820
(
2012
).
23.
J.-H.
Jiang
,
O.
Entin-Wohlman
, and
Y.
Imry
,
Phys. Rev. B
87
,
205420
(
2013
).
24.
A. N.
Jordan
,
B.
Sothmann
,
R.
Sánchez
, and
M.
Büttiker
,
Phys. Rev. B
87
,
075312
(
2013
).
25.
J.-H.
Jiang
,
O.
Entin-Wohlman
, and
Y.
Imry
,
New J. Phys.
15
,
075021
(
2013
).
26.
Y.
Imry
,
O.
Entin-Wohlman
, and
J. H.
Jiang
, U.S. patent WO 2,013,035,100 (Mar 14, 2013).
27.
S.
Juergens
,
F.
Haupt
,
M.
Moskalets
, and
J.
Splettstoesser
,
Phys. Rev. B
87
,
245423
(
2013
);
C.
Bergenfeldt
,
P.
Samuelsson
,
B.
Sothmann
,
C.
Flindt
, and
M.
Büttiker
,
Phys. Rev. Lett.
112
,
076803
(
2014
);
[PubMed]
R.
Bosisio
,
C.
Gorini
,
G.
Fleury
, and
J.-L.
Pichard
,
New J. Phys.
16
,
095005
(
2014
); e-print arXiv:1407.7020.
28.
B.
Sothmann
,
R.
Sánchez
,
A. N.
Jordan
, and
M.
Büttiker
,
New J. Phys.
15
,
095021
(
2013
).
29.
H. L.
Edwards
,
Q.
Niu
, and
A. L. de
Lozanne
,
Appl. Phys. Lett.
63
,
1815
(
1993
);
H. L.
Edwards
,
Q.
Niu
,
G. A.
Georgakis
, and
A. L. de
Lozanne
,
Phys. Rev. B
52
,
5714
(
1995
).
30.
J. R.
Prance
,
C. G.
Smith
,
J. P.
Griffiths
,
S. J.
Chorley
,
D.
Anderson
,
G. A. C.
Jones
,
I.
Farrer
, and
D. A.
Ritchie
,
Phys. Rev. Lett.
102
,
146602
(
2009
).
31.
S.-K.
Park
,
J.
Tatebayashi
, and
Y.
Arakawa
,
Appl. Phys. Lett.
84
,
1877
(
2004
);
S.
Tonomura
and
K.
Yamaguchi
,
J. Appl. Phys.
104
,
054909
(
2008
);
M.
Jo
,
T.
Mano
,
Y.
Sakuma
, and
K.
Sakoda
,
Appl. Phys. Lett.
100
,
212113
(
2012
).
32.
Y.
Yang
, in
Physical Properties of Polymers Handbook
, edited by
J. E.
Mark
(
AIP Press
,
Woodbury, NY
,
1996
), Chap. 10.
33.
W. R.
Algar
and
U. J.
Krull
,
Langmuir
24
,
5514
(
2008
);
[PubMed]
S.
Ishii
,
R.
Ueji
,
S.
Nakanishi
,
Y.
Yoshida
,
H.
Nagata
,
T.
Itoh
,
M.
Ishikawa
, and
V.
Biju
,
J. Photochem. Photobiol., A
183
,
285
(
2006
).
34.
K.
Zhang
,
Y.
Zhang
, and
S.
Wang
,
Sci. Rep.
3
,
3448
(
2013
).
35.

The polymer electronic band gap should be considerably larger than the semiconductor band gap, so that the charge carriers in the doped semiconductor regions (i.e., the cavity, source, and drain) will not diffuse into the polymer resisting layers.

36.
R. S.
Whitney
,
Phys. Rev. Lett.
112
,
130601
(
2014
).
37.
M.
Gong
,
K.
Duan
,
C.-F.
Li
,
R.
Magri
,
G. A.
Narvaez
, and
L.
He
,
Phys. Rev. B
77
,
045326
(
2008
);
A. D.
Lad
and
S.
Mahamuni
,
Phys. Rev. B
78
,
125421
(
2008
).
38.
H.
Haug
and
A. P.
Jauho
,
Quantum Kinetics in Transport and Optics of Semiconductors
(
Springer
,
Berlin
,
1996
).
40.
Y.
Demirel
and
S. I.
Sandler
,
J. Phys. Chem. B
108
,
31
(
2004
).
41.
H. T.
Odum
and
R. C.
Pinkerton
,
Am. Sci.
43
,
331
(
1955
).
42.
J.-H.
Jiang
,
Phys. Rev. E
90
,
042126
(
2014
).
43.
C. Van den
Broeck
,
Phys. Rev. Lett.
95
,
190602
(
2005
);
[PubMed]
M.
Esposito
,
K.
Lindenberg
, and
C. Van den
Broeck
,
Phys. Rev. Lett.
102
,
130602
(
2009
).
[PubMed]
44.
S. A.
Gurvitz
,
Phys. Rev. B
57
,
6602
(
1998
).
45.
J.
Berezovsky
,
O.
Gywat
,
F.
Meier
,
D.
Battaglia
,
X.
Peng
, and
D. D.
Awschalom
,
Nat. Phys.
2
,
831
(
2006
).
46.
K.
Koumoto
 et al., in
CRC Thermoelectric Handbook: Micro to Nano
, edited by
D. M.
Rowe
(
CRC Press
,
U.S.A.
,
2006
).
47.
A.
Agarwal
and
B.
Muralidharan
,
Appl. Phys. Lett.
105
,
013104
(
2014
).
You do not currently have access to this content.