We report photo-thermoelectric transport phenomena in Pb2CrO5 single crystals. Without illumination, this material exhibits an insulating behavior characterized by an activation-type temperature variation of the electrical conductivity. The Seebeck coefficient contrastingly shows a crossover from high-temperature insulating to low-temperature metallic behavior, which is attributed to degenerate carriers in a donor level. We have found that under illumination, both the conductivity and the Seebeck coefficient increase in magnitude with increasing photon flux density in the degenerate-conduction regime. This result is difficult to understand within a simple photo-doping effect, which usually leads to a decrease in the Seebeck coefficient under illumination. The observed phenomenon is discussed in terms of a two-carrier contribution to the transport properties.

1.
G. D.
Mahan
,
Solid State Phys.
51
,
81
(
1998
).
2.
G. J.
Snyder
and
E. S.
Toberer
,
Nature Mater.
7
,
105
(
2008
).
3.
Thermoelectrics and Its Energy Harvesting
, edited by
D. M.
Rowe
(
CRC Press
,
London
,
2012
).
4.
Thermoelectric Nanomaterials: Materials Design and Applications
, edited by
K.
Koumoto
and
T.
Mori
(
Springer
,
Heidelberg
,
2013
).
5.
S.
Maekawa
,
H.
Adachi
,
K.
Uchida
,
J.
Ieda
, and
E.
Saitoh
,
J. Phys. Soc. Jpn.
82
,
102002
(
2013
).
6.
G.
Benenti
,
G.
Casati
,
T.
Prosen
, and
K.
Saito
, “
Fundamental aspects of steady state heat to work conversion
,” e-print arXiv:1311.4430 (
2013
).
7.
J.
Tauc
,
Czech. J. Phys.
5
,
528
(
1955
).
8.
I.
Terasaki
,
R.
Okazaki
,
P. S.
Mondal
, and
Y.-C.
Hsieh
,
Mater. Renew. Sustain. Energy
3
,
29
(
2014
).
9.
J. G.
Harper
,
H. E.
Matthews
, and
R. H.
Bube
,
J. Appl. Phys.
41
,
3182
(
1970
).
10.
H. B.
Kwok
and
R. H.
Bube
,
J. Appl. Phys.
44
,
138
(
1973
).
11.
R.
Okazaki
,
A.
Horikawa
,
Y.
Yasui
, and
I.
Terasaki
,
J. Phys. Soc. Jpn.
81
,
114722
(
2012
).
12.
P. S.
Mondal
,
R.
Okazaki
,
H.
Taniguchi
, and
I.
Terasaki
,
J. Appl. Phys.
114
,
173710
(
2013
).
13.
J. G.
Harper
,
H. E.
Matthews
, and
R. H.
Bube
,
J. Appl. Phys.
41
,
765
(
1970
).
14.
K.
Toda
and
S.
Morita
,
J. Appl. Phys.
57
,
5325
(
1985
).
15.
K.
Toda
and
S.
Morita
,
J. Appl. Phys.
55
,
210
(
1984
).
16.
K.
Toda
and
S.
Morita
,
Appl. Phys. A
33
,
231
(
1984
).
17.
K.
Toda
and
S.
Yoshida
,
J. Appl. Phys.
65
,
857
(
1989
).
18.
T.
Negas
,
J. Am. Ceram. Soc.
51
,
716
(
1968
).
19.
B.
Indovski
,
M. P.
Singh
, and
F. S.
Razavi
,
J. Magn. Magn. Mater.
331
,
72
(
2013
).
20.
See http://www.aflowlib.org for materials properties repository from high-throughput ab-initio calculation.
21.
T. H.
Geballe
and
G. W.
Hull
,
Phys. Rev.
98
,
940
(
1955
).
22.
F.
Ermanis
and
E.
Miller
,
J. Electrochem. Soc.
108
,
1048
(
1961
).
23.
T.
Caillat
,
A.
Borshchevsky
, and
J. P.
Fleurial
,
J. Appl. Phys.
80
,
4442
(
1996
).
24.
R.
Takahashi
,
R.
Okazaki
,
Y.
Yasui
,
I.
Terasaki
,
T.
Sudayama
,
H.
Nakao
,
Y.
Yamasaki
,
J.
Okamoto
,
Y.
Murakami
, and
Y.
Kitajima
,
J. Appl. Phys.
112
,
073714
(
2012
).
25.
G. S.
Nolas
,
J.
Sharp
, and
H. J.
Goldsmid
,
Thermoelectrics: Basic Principles and New Materials Developments
(
Springer
,
Berlin
,
2001
).
26.
S.
Morita
and
K.
Toda
,
J. Appl. Phys.
55
,
2733
(
1984
).
27.
G.
Homm
,
M.
Piechotka
,
A.
Kronenberger
,
A.
Laufer
,
F.
Gather
,
D.
Hartung
,
C.
Heiliger
,
B. K.
Meyer
,
P. J.
Klar
,
S. O.
Steinmüller
, and
J.
Janek
,
J. Electron. Mater.
39
,
1504
(
2010
).
28.
R. H.
Bube
and
H. E.
Macdonald
,
Phys. Rev.
121
,
473
(
1961
).
29.
S. A.
Studenikin
,
N.
Golego
, and
M.
Cocivera
,
J. Appl. Phys.
83
,
2104
(
1998
).
30.
S. B.
Zhang
,
S.-H.
Wei
, and
A.
Zunger
,
Phys. Rev. B
63
,
075205
(
2001
).
31.
K.
Kempa
,
M. J.
Naughton
,
Z. F.
Ren
,
A.
Herczynski
,
T.
Kirkpatrick
,
J.
Rybczynski
, and
Y.
Gao
,
Appl. Phys. Lett.
95
,
233121
(
2009
).
32.
E. M.
Conwell
,
Solid State Phys. Suppl.
9
,
81
(
1967
).
33.
B. K.
Ridley
and
T. B.
Watkins
,
Proc. Phys. Soc.
78
,
293
(
1961
).
You do not currently have access to this content.