In this work, the characteristics of vertical tunneling field-effect transistors based on graphene (VTGFET) and graphene nanoribbon heterostructure (VTGNRFET) in the presence of disorder are theoretically investigated. An statistical analysis based on an atomistic tight-binding model for the electronic bandstructure along with the non-equilibrium Green's function formalism are employed. We study the dependence of the averaged density of states, transmission probability, on- and off-state conductances, on/off conductance ratio, and transfer characteristics on the substrate induced potential fluctuations and vacancies. In addition, the variabilities of the device characteristics due to the presence of disorder are evaluated. It can be inferred from the results that while introducing vacancies cause a relatively modest suppression of the transmission probability, potential fluctuations lead to the significant increase of transmission probability and conductance of the device. Moreover, the results show that the transport properties of VTGFET are more robust against disorder compared to VTGNRFET.

1.
A. K.
Geim
and
K. S.
Novoselov
,
Nature Mater.
6
,
183
(
2007
).
2.
L.
Ci
,
L.
Song
,
C.
Jin
,
D.
Jariwala
,
D.
Wu
,
Y.
Li
,
A.
Srivastava
,
Z. F.
Wang
,
K.
Storr
,
L.
Balicasa
,
F.
Liu
, and
P. M.
Ajayan
,
Nature Mater.
9
,
430
(
2010
).
3.
W.
Mehr
,
J. C.
Scheytt
,
J.
Dabrowski
,
G.
Lippert
,
Y. H.
Xie
,
M. C.
Lemme
,
M.
Ostling
, and
G.
Lupina
,
IEEE Electron Device Lett.
33
,
691
(
2012
).
4.
L.
Britnell
,
R. V.
Gorbachev
,
R.
Jalil
,
B. D.
Belle
,
F.
Schedin
,
A.
Mishchenko
,
T.
Georgiou
,
M. I.
Katsnelson
,
L.
Eaves
,
S. V.
Morozov
,
N. M. R.
Peres
,
J.
Leist
,
A. K.
Geim
,
K. S.
Novoselov
, and
L. A.
Ponomarenko
,
Science
335
,
947
(
2012
).
5.
N.
Ghobadi
and
M.
Pourfath
,
IEEE Trans. Electron Devices
61
,
186
(
2014
).
6.
A.
Yazdanpanah
,
M.
Pourfath
,
M.
Fathipour
, and
H.
Kosina
,
IEEE Trans. Electron Devices
59
,
433
(
2012
).
7.
A. Y.
Goharrizi
,
M.
Pourfath
,
M.
Fathipour
, and
H.
Kosina
,
IEEE Trans. Electron Devices
59
,
3527
(
2012
).
8.
N.
Djavid
,
K.
Khaliji
,
S. M.
Tabatabaei
, and
M.
Pourfath
,
IEEE Trans. Electron Devices
61
,
23
(
2014
).
9.
R. M.
Ribeiro
and
N. M. R.
Peres
,
Phys. Rev. B
83
,
235312
(
2011
).
10.
J.
Sławińska
,
I.
Zasada
, and
Z.
Klusek
,
Phys. Rev. B
81
,
155433
(
2010
).
11.
M. P.
Anantram
,
M. S.
Lundstrom
, and
D. E.
Nikonov
,
Proc. IEEE
96
,
1511
(
2008
).
12.
R. N.
Sajjad
,
C. A.
Polanco
, and
A. W.
Ghosh
,
J. Comput. Electron.
12
,
232
(
2013
).
13.
T.
Low
,
S.
Hong
,
J.
Appenzeller
,
S.
Member
,
S.
Datta
, and
M. S.
Lundstrom
,
IEEE Trans. Electron Devices
56
,
1292
(
2009
).
14.
S. B.
Kumar
,
G.
Seol
, and
J.
Guo
,
Appl. Phys. Lett.
101
,
033503
(
2012
).
15.
C. H.
Lewenkopf
,
E. R.
Mucciolo
, and
A. H. C.
Neto
,
Phys. Rev. B
77
,
081410
(
2008
).
16.
J.
Martin
,
N.
Akerman
,
G.
Ulbricht
,
T.
Lohmann
,
J. H.
Smet
,
K.
von Klitzing
, and
A.
Yacoby
,
Nat. Phys.
4
,
144
(
2008
).
17.
C.
Stampfer
,
J.
Gttinger
,
S.
Hellmller
,
F.
Molitor
,
K.
Ensslin
, and
T.
Ihn
,
Phys. Rev. Lett.
102
,
056403
(
2009
).
18.
M.
Poljak
,
S.
Member
,
E. B.
Song
,
M.
Wang
,
T.
Suligoj
, and
K. L.
Wang
,
IEEE Trans. Electron Devices
59
,
3231
(
2012
).
19.
Y. Y.
Illarionov
,
A.
Smith
,
S.
Vaziri
,
M.
Ostling
,
T.
Mueller
,
M.
Lemme
, and
T.
Grasser
,
Appl. Phys. Lett.
105
,
143507
(
2014
).
20.
W.
Wang
,
V.
Reddy
, and
A. T.
Krishnan
,
IEEE Trans. Device Mater. Reliab.
7
,
509
(
2007
).
21.
A.
Asenov
,
A. R.
Brown
,
J. H.
Davies
,
S.
Kaya
, and
G.
Slavcheva
,
IEEE Trans. Electron Devices
50
,
1837
(
2003
).
22.
V. J.
Surya
,
K.
Iyakutti
,
H.
Mizuseki
, and
Y.
Kawazoe
,
IEEE Trans. Nanotechnol.
11
,
534
(
2012
).
23.
V. M.
Pereira
,
J. M. B. L. dos
Santos
, and
A. H. C.
Neto
,
Phys. Rev. B
77
,
115109
(
2008
).
24.
S.
Chang
,
Y.
Zhang
,
Q.
Huang
,
H.
Wang
, and
G.
Wang
,
Micro Nano Lett.
8
,
816
(
2013
).
25.
M. Y.
Han
,
J. C.
Brant
, and
P.
Kim
,
Phys. Rev. Lett.
104
,
056801
(
2010
).
26.
L.
Song
,
L.
Ci
,
H.
Lu
,
P. B.
Sorokin
,
C.
Jin
,
J.
Ni
,
A. G.
Kvashnin
,
D. G.
Kvashnin
,
J.
Lou
,
B. I.
Yakobson
, and
P. M.
Ajayan
,
Nano Lett.
10
,
3209
(
2010
).
27.
A.
Zobelli
,
C. P.
Ewels
,
A.
Gloter
,
G.
Seifert
,
O.
Stephan
,
S.
Csillag
, and
C.
Colliex
,
Nano Lett.
6
,
1955
(
2006
).
28.
Z. L.
Hou
,
M. S.
Cao
,
J.
Yuan
,
X. Y.
Fang
, and
X. L.
Shi
,
J. Appl. Phys.
105
,
076103
(
2009
).
29.
W.
Orellana
and
H.
Chacham
,
Phys. Rev. B
63
,
125205
(
2001
).
30.
S.
Park
,
C.
Park
, and
G.
Kim
,
J. Chem. Phys.
140
,
134706
(
2014
).
31.
M. S.
Si
and
D. S.
Xue
,
Phys. Rev. B
75
,
193409
(
2007
).
32.
S.
Azevedo
,
J. R.
Kaschny
,
C. M. C. de
Castilho
, and
F. de Brito
Mota
,
Eur. Phys. J. B
67
,
507
(
2009
).
33.
E. R.
Mucciolo
,
A. H. C.
Neto
, and
C. H.
Lewenkopf
,
Phys. Rev. B
79
,
075407
(
2009
).
You do not currently have access to this content.