This work shows the application of metal ion-implantation to realize an efficient second-generation TiO2 photocatalyst. High fluence Fe+ ions were implanted into thin TiO2 films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO2 pure film, locally lowering its band-gap energy from 3.2 eV to 1.6–1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6–1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO2.

1.
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
(
1972
).
2.
M. N.
Chong
,
B.
Jin
,
C. W. K.
Chow
, and
C.
Saint
,
Water Res.
44
,
2997
(
2010
).
3.
S.
Malato
,
P.
Fernàndez-Ibáñez
,
M. I.
Maldonado
,
J.
Blanco
, and
W.
Gernjak
,
Catal. Today
147
,
1
(
2009
).
4.
M. A.
Shannon
,
P. W.
Bohn
,
M.
Elimelech
,
J. G.
Georgiadis
,
B. J.
Marinas
, and
A. M.
Mayes
,
Nature
452
,
301
(
2008
).
5.
D. F.
Ollis
,
Environ. Sci. Technol.
19
,
480
(
1985
).
6.
N.
Serpone
,
G.
Sauvé
,
R.
Koch
,
H.
Tahiri
,
P.
Pichat
,
P.
Piccinini
,
E.
Pelizzetti
, and
H.
Hidaka
,
J. Photochem. Photobiol., A
94
,
191
(
1996
).
7.
A.
Fujishima
,
T. N.
Rao
, and
D. A.
Tryk
,
J. Photochem. Photobiol., C
1
,
1
(
2000
).
8.
X.
Chen
and
S. S.
Mao
,
Chem. Rev.
107
,
2891
(
2007
).
9.
V.
Scuderi
,
G.
Impellizzeri
,
L.
Romano
,
M.
Scuderi
,
G.
Nicotra
,
K.
Bergum
,
A.
Irrera
,
B. G.
Svensson
, and
V.
Privitera
,
Nanoscale Res. Lett.
9
,
458
(
2014
).
10.
V.
Scuderi
,
G.
Impellizzeri
,
L.
Romano
,
M.
Scuderi
,
M. V.
Brundo
,
K.
Bergum
,
M.
Zimbone
,
R.
Sanz
,
M. A.
Buccheri
,
F.
Simone
,
G.
Nicotra
,
B. G.
Svensson
,
M. G.
Grimaldi
, and
V.
Privitera
,
Nanoscale
6
,
11189
(
2014
).
11.
A.
Bendavid
,
P. J.
Martin
,
A.
Jamting
, and
H.
Takikawa
,
Thin Solid Films
355
,
6
(
1999
).
12.
R.
Asahi
,
T.
Morikawa
,
T.
Ohwaki
,
K.
Aoki
, and
Y.
Taga
,
Science
293
,
269
(
2001
).
13.
S. U. M.
Khan
,
M.
Al-Shahry
, and
W. B.
Ingler
, Jr.
,
Science
297
,
2243
(
2002
).
14.
15.
S.
Zhang
,
Y.
Chen
,
Y.
Yu
,
H.
Wu
,
S.
Wang
,
B.
Zhu
,
W.
Huang
, and
S.
Wu
,
J. Nanopart. Res.
10
,
871
(
2008
).
16.
J.
Yu
,
Q.
Xiang
, and
M.
Zhou
,
Appl. Catal. B
90
,
595
(
2009
).
17.
H.
Yamashita
,
M.
Harada
,
J.
Misaka
,
M.
Takeuchi
,
B.
Neppolian
, and
M.
Anpo
,
Catal. Today
84
,
191
(
2003
).
18.
M.
Anpo
and
M.
Takeuchi
,
J. Catal.
216
,
505
(
2003
).
19.
L. Z.
Qin
,
H.
Liang
,
B.
Liao
,
A. D.
Liu
,
X. Y.
Wu
, and
J.
Sun
,
Nucl. Instrum. Methods Phys. Res., Sect. B
307
,
385
(
2013
).
20.
E.
Rimini
,
Ion Implantation: Basics to Device Fabrication
(
Kluwer Academic Publishers
,
Boston
,
1995
).
21.
D.
Velten
,
V.
Biehl
,
F.
Aubertin
,
B.
Valeske
,
W.
Possart
, and
J.
Breme
,
J. Biomed. Mater. Res.
59
,
18
(
2002
).
22.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
1984
), Vol. 1; see http://www.srim.org for The Stopping and Range of Ions in Solids.
23.
H.
Zollinger
,
Color Chemistry, Synthesis, Properties and Applications of Organic Dyes and Pigments
(
VCH
,
Weinheim, Germany
,
1991
).
24.
A. D.
McNaught
and
A.
Wilkinson
,
Compendium of Chemical Terminology, The “Gold Book,”
2nd ed. (
Blackwell Scientific Publications
,
Oxford
,
1997
).
25.
R.
Wang
,
K.
Hashimoto
,
A.
Fujishima
,
M.
Chikuni
,
E.
Kojima
,
A.
Kitamura
,
M.
Shimohigoshi
, and
T.
Watanabe
,
Nature
388
,
431
(
1997
).
26.
M.
Thompson
, see http://www.genplot.com for RUMP: Rutherford backscattering spectroscopy analysis package.
27.
J.
Jensen
,
R.
Sanz
,
D.
Martin
,
A.
Surpi
,
T.
Kubart
,
M.
Vázquez
, and
M.
Hernandez-Velez
,
Nucl. Instrum. Methods Phys. Res., Sect. B
267
,
2725
(
2009
).
28.
W. F.
Zhang
,
Y. L.
He
,
M. S.
Zhang
,
Z.
Yin
, and
Q.
Chen
,
J. Phys. D: Appl. Phys.
33
,
912
(
2000
).
29.
B.
Leedahl
,
D. A.
Zatsepin
,
D. W.
Boukhvalov
,
R. J.
Green
,
J. A.
McLeod
,
S. S.
Kim
,
E. Z.
Kurmaev
,
I. S.
Zhidkov
,
N. V.
Gavrilov
,
S. O.
Cholakh
, and
A.
Moewes
,
J. Appl. Phys.
115
,
053711
(
2014
).
30.
D. A. H.
Hanaor
and
C. C.
Sorrell
,
J. Mater. Sci.
46
,
855
(
2011
).
31.
J.
Tauc
,
Amorphous and Liquid Semiconductors
(
Plenum
,
New York
,
1974
),
p. 175
.
32.
J.
Pascual
,
J.
Camassel
, and
H.
Mathieu
,
Phys. Rev. Lett.
39
,
1490
(
1977
).
33.
S.
Knief
and
W.
von Niessen
,
Phys. Rev. B
59
,
12940
(
1999
).
You do not currently have access to this content.