Spark Plasma Sintering is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain MgB2-based ceramics with tailored microstructures. Commercial MgB2 powders were spark plasma sintered with an applied mechanical pressure, leading to MgB2 pellets with 99% relative density. The obtained samples show a sharp superconducting transition with an onset at 38.5 K. The critical current density was measured equal to 5.6 × 104 A/cm2 at 20 K under 1 T applied field. Otherwise, the trapped field was also investigated. A 5 mm thick pellet with a 20 mm diameter prepared with optimized processing temperature demonstrated a trapped field of 1.2 T at 15 K and up to 2.5 T at 10 K.

1.
J.
Nagamatsu
,
N.
Nakagawa
,
T.
Muranaka
,
Y.
Zenitani
, and
J.
Akimitsu
,
Nature
410
,
63
(
2001
).
2.
L.
Gozzelino
,
R.
Gerbaldo
,
G.
Ghigo
,
F.
Laviano
,
G.
Lopardo
,
G. A.
Ummarino
,
G.
Giunchi
,
E.
Perini
,
E.
Bassani
,
A.
Agostino
, and
B.
Minetti
,
IEEE Trans. Appl. Supercond.
19
,
3524
(
2009
).
3.
A.
Yamamoto
,
A.
Ishihara
,
M.
Tomita
, and
K.
Kishio
,
Appl. Phys. Lett.
105
,
032601
(
2014
).
4.
J. H.
Durrell
,
C. E. J.
Dancer
,
A.
Dennis
,
Y.
Shi
,
Z.
Xu
,
A. M.
Campbell
,
N. Hari
Babu
,
R. I.
Todd
,
C. R. M.
Grovenor
, and
D. A.
Cardwell
,
Supercond. Sci. Technol.
25
,
112002
(
2012
).
5.
G.
Fuchs
,
W.
Häßler
,
K.
Nenkov
,
J.
Scheiter
,
O.
Perner
,
A.
Handstein
,
T.
Kanai
,
L.
Schultz
, and
B.
Holzapfel
,
Supercond. Sci. Technol.
26
,
122002
(
2013
).
6.
M.
Muralidhar
,
K.
Inoue
,
M. R.
Koblischka
,
M.
Tomita
, and
M.
Murakami
,
J. Alloys Compd.
608
,
102
109
(
2014
).
7.
V.
Grinenko
,
E. P.
Krasnoperov
,
C. A.
Stoliarov
,
A. A.
Bush
, and
B. P.
Mikhajlov
,
Solid State Commun.
138
,
461
(
2006
).
8.
A.
Tampieri
,
G.
Celotti
,
S.
Sprio
,
R.
Caciuffo
, and
D.
Rinaldi
,
Physica C
400
,
97
(
2004
).
9.
H.
Kumakura
,
Y.
Takano
,
H.
Fujii
,
K.
Togano
,
H.
Kito
, and
H.
Ihara
,
Physica C
363
,
179
(
2001
).
10.
Y.
Takano
,
H.
Takeya
,
H.
Fujii
,
H.
Kumakura
,
T.
Hatano
,
K.
Togano
,
H.
Kito
, and
H.
Ihara
,
Appl. Phys. Lett.
78
,
2914
(
2001
).
11.
T. C.
Shields
,
K.
Kawano
,
D.
Holden
, and
J. S.
Abell
,
Supercond. Sci. Technol.
15
,
202
(
2002
).
12.
A.
Gumbel
,
J.
Eckert
,
G.
Fuchs
,
K.
Nenkov
,
K.-H.
Muller
, and
L.
Schulz
,
Appl. Phys. Lett.
80
,
2725
(
2002
).
13.
14.
R.
Orru
,
R.
Licheri
,
A. M.
Locci
,
Al.
Cincotti
, and
G.
Cao
,
Mater. Sci. Eng., R
63
,
127
(
2009
).
15.
J.
Schmidt
,
W.
Schnelle
,
Y.
Grin
, and
R.
Kniep
,
Solid State Sci.
5
,
535
(
2003
).
16.
S. H.
Shim
,
K. B.
Shim
, and
J. W.
Yoon
,
J. Am. Ceram. Soc.
88
,
858
(
2005
).
17.
C. E. J.
Dancer
,
P.
Mikheenko
,
A. I.
Bevan
,
J. S.
Abell
,
R. I.
Todd
, and
C. R. M.
Grovenor
,
J. Eur. Ceram. Soc.
29
,
1817
(
2009
).
18.
T.
Prikhna
,
M.
Eisterer
,
H. W.
Weber
,
W.
Gawalek
,
V.
Kovylaev
,
M.
Karpets
,
V.
Moshchil
,
A.
Kozyrev
,
T.
Basyuk
,
X.
Chaud
,
W.
Goldacker
,
V.
Sokolovsky
,
J.
Noudem
,
A.
Borimskiy
,
V.
Sverdun
, and
E.
Prisyazhnaya
,
Physica C
503
,
109
(
2014
).
19.
D. X.
Chen
and
R. B.
Goldfarb
,
J. Appl. Phys.
66
,
2489
(
1989
).
20.
M.
Muralidhar
,
A.
Ishihara
,
K.
Suzuki
,
Y.
Fukumoto
,
Y.
Yamamoto
, and
M.
Tomita
,
Physica C
494
,
85
(
2013
).
21.
C. E. J.
Dancer
,
D.
Prabhakaran
,
M.
Basoglu
,
E.
Yanmaz
,
H.
Yan
,
M.
Reece
,
R. I.
Todd
, and
C. R. M.
Grovenor
,
Supercond. Sci. Technol.
22
,
095003
(
2009
).
22.
Y.
Zhao
,
Y.
Feng
,
C. H.
Cheng
,
L.
Zhou
,
Y.
Wu
,
T.
Machi
,
Y.
Fudamoto
,
N.
Koshizuka
, and
M.
Murakami
,
Appl. Phys. Lett.
79
(
8
),
1154
1156
(
2001
).
23.
J.-K.
Park
,
U.-I.
Chung
,
N. M.
Hwang
, and
D.-Y.
Kim
,
J. Am. Ceram. Soc.
84
(
12
),
3057
3059
(
2001
).
24.
N.
Rogado
,
M. A.
Hayward
,
K. A.
Regan
,
Y. Y.
Wang
,
N. P.
Ong
,
H. W.
Zandbergen
,
J. M.
Rowell
, and
R. J.
Cava
,
J. Appl. Phys.
91
,
274
(
2002
).
25.
S.
Kim
,
D. S.
Stone
,
J.-I.
Cho
,
C.-Y.
Jeong
,
C.-S.
Kang
, and
J.-C.
Bae
,
J. Alloys Compd.
470
,
85
(
2009
).
26.
T.
Sasaki
,
T.
Naito
, and
H.
Fujishiro
,
Phys. Procedia
45
,
93
(
2013
).
You do not currently have access to this content.