The electrooptic effect in ZnTe has recently attracted research attention, and various device structures using ZnTe have been explored. For application to practical terahertz wave detector devices based on ZnTe thin films, sapphire substrates are preferred because they enable the optical path alignment to be simplified. ZnTe/sapphire heterostructures were focused upon, and ZnTe epilayers were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. Epitaxial relationships between the ZnTe thin films and the sapphire substrates with their various orientations were investigated using an X-ray diffraction pole figure method. (0001) c-plane, (1-102) r-plane, (1-100) m-plane, and (11-20) a-plane oriented sapphire substrates were used in this study. The epitaxial relationship between ZnTe and c-plane sapphire was found to be (111) ZnTe//(0001) sapphire with an in-plane orientation relationship of [−211] ZnTe//[1-100] sapphire. It was found that the (211)-plane ZnTe layer was grown on the m-plane of the sapphire substrates, and the (100)-plane ZnTe layer was grown on the r-plane sapphire. When the sapphire substrates were inclined from the c-plane towards the m-axis direction, the orientation of the ZnTe thin films was then tilted from the (111)-plane to the (211)-plane. The c-plane of the sapphire substrates governs the formation of the (111) ZnTe domain and the ZnTe epilayer orientation. These crystallographic features were also related to the atom arrangements of ZnTe and sapphire.

1.
K.
Tsutsumi
,
H.
Terakado
,
M.
Enami
, and
M.
Kobayashi
,
J. Vac. Sci. Technol. B
21
,
1959
(
2003
).
2.
I.
Nomura
,
Y.
Ochiai
,
N.
Toyomura
,
A.
Manoshiro
,
A.
Kikuchi
, and
K.
Kishino
,
Phys. Status Solidi B
241
(
3
),
483
(
2004
).
3.
T.
Tanaka
,
M.
Miyabara
,
Y.
Nagao
,
K.
Saito
,
D.
Guo
,
M.
Nishio
,
K. M.
Yu
, and
W.
Walukiewicz
,
Appl. Phys. Lett.
102
,
052111
(
2013
).
4.
W.
Wang
,
A. S.
Lin
, and
J. D.
Philips
,
Appl. Phys. Lett.
95
,
011103
(
2009
).
5.
S.
Imada
,
T.
Baba
,
S.
Sakurasawa
, and
M.
Kobayashi
,
Phys. Status Solidi C
7
,
1473
(
2010
).
6.
Y.
Kumagai
and
M.
Kobayashi
,
Jpn. J. Appl. Phys.
51
,
02BH06
(
2012
).
7.
Y.
Kumagai
,
S.
Imada
,
T.
Baba
, and
M.
Kobayashi
,
J. Cryst. Growth
323
,
132
(
2011
).
8.
W.
Sun
,
T.
Nakasu
,
K.
Taguri
,
T.
Aiba
,
S.
Yamashita
,
M.
Kobayashi
,
H.
Togo
, and
T.
Asahi
,
Phys. Status Solidi C
11
(
7–8
),
1252
(
2014
).
9.
Q.
Wu
,
M.
Litz
, and
X. C.
Zhang
,
Appl. Phys. Lett.
68
,
2924
(
1996
).
10.
Q.
Guo
,
M.
Nada
,
Y.
Dling
,
T.
Tanaka
, and
M.
Nishio
,
J. Appl. Phys.
107
,
123525
(
2010
).
11.
M.
Kobayashi
,
Y.
Kumagai
,
T.
Baba
, and
S.
Imada
,
Phys. Status Solidi C
9
,
1748
(
2012
).
12.
T.
Nakasu
,
Y.
Kumagai
,
K.
Nishimura
,
M.
Kobayashi
,
H.
Togo
, and
T.
Asahi
,
Appl. Phys. Express
5
,
095502
(
2012
).
13.
T.
Nakasu
,
M.
Kobaysahi
,
H.
Togo
, and
T.
Asahi
,
Phys. Status Solidi C
10
,
1381
(
2013
).
14.
T.
Nakasu
,
M.
Kobayashi
,
H.
Togo
, and
T.
Asahi
,
J. Electron. Mater.
43
,
921
(
2014
).
15.
T.
Nakasu
,
W.
Sun
,
S.
Yamashita
,
T.
Aiba
,
K.
Taguri
,
M.
Kobayashi
,
T.
Asahi
, and
H.
Togo
,
Phys. Status Solidi C
11
(
7–8
),
1182
(
2014
).
16.
T.
Nakasu
,
M.
Kobayashi
,
T.
Asahi
, and
H.
Togo
,
Jpn. J. Appl. Phys.
53
,
015502
(
2014
).
17.
Q.
Chen
,
M.
Tani
,
Z.
Jiang
, and
X. C.
Zhang
,
J. Opt. Soc. Am. B
18
(
6
),
823
(
2001
).
18.
S.
Namba
,
J. Opt. Soc. Am.
51
,
76
(
1961
).
19.
K.
Inaba
,
S.
Kobayashi
,
K.
Uehara
,
A.
Okada
,
S. L.
Reddy
, and
T.
Endo
,
Adv. Mater. Phys. Chem.
3
,
72
(
2013
).
20.
J.
Narayan
and
B. C.
Larson
,
J. Appl. Phys.
93
,
278
(
2003
).
21.
M. S.
Abrahams
and
C. J.
Buiocchi
,
Appl. Phys. Lett.
27
,
325
(
1975
).
22.
P. A.
Stampe
,
M.
Bullock
,
W. P.
Tucker
, and
R. J.
Kennedy
,
J. Phys. D: Appl. Phys.
32
,
1778
(
1999
).
You do not currently have access to this content.