A novel Micro-Raman technique was designed and used to detect extended defects in 4H-SiC homoepitaxy. The technique uses above band-gap high-power laser densities to induce a local increase of free carriers in undoped epitaxies (n < 1016 at/cm−3), creating an electronic plasma that couples with the longitudinal optical (LO) Raman mode. The Raman shift of the LO phonon-plasmon-coupled mode (LOPC) increases as the free carrier density increases. Crystallographic defects lead to scattering or recombination of the free carriers which results in a loss of coupling with the LOPC, and in a reduction of the Raman shift. Given that the LO phonon-plasmon coupling is obtained thanks to the free carriers generated by the high injection level induced by the laser, we named this technique induced-LOPC (i-LOPC). This technique allows the simultaneous determination of both the carrier lifetime and carrier mobility. Taking advantage of the modifications on the carrier lifetime induced by extended defects, we were able to determine the spatial morphology of stacking faults; the obtained morphologies were found to be in excellent agreement with those provided by standard photoluminescence techniques. The results show that the detection of defects via i-LOPC spectroscopy is totally independent from the stacking fault photoluminescence signals that cover a large energy range up to 0.7 eV, thus allowing for a single-scan simultaneous determination of any kind of stacking fault. Combining the i-LOPC method with the analysis of the transverse optical mode, the micro-Raman characterization can determine the most important properties of unintentionally doped film, including the stress status of the wafer, lattice impurities (point defects, polytype inclusions) and a detailed analysis of crystallographic defects, with a high spectral and spatial resolution.

1.
H.
Lendenmann
,
F.
Dahlquist
,
J. P.
Bergman
,
H.
Bleichner
, and
C.
Hallin
,
Mater. Sci. Forum
389–393
,
1259
(
2002
).
2.
M.
Skowronski
and
S.
Ha
,
J. Appl. Phys.
99
,
011101
(
2006
).
3.
J. P.
Bergman
and
H. P. A. U. P.
Skytt
,
Mater. Sci. Forum
353–356
,
299
(
2001
).
4.
K.
Nakayama
,
A.
Tanaka
,
K.
Asano
,
T.
Miyazawa
, and
H.
Tsuchida
,
Mater. Sci. Forum
740–742
,
903
(
2013
).
5.
A.
Tanaka
,
K.
Nakayama
,
K.
Asano
,
T.
Miyazawa
, and
H.
Tsuchida
,
Jpn. J. Appl. Phys., Part 1
52
,
04CP10-1
(
2013
).
6.
B.
Chen
,
J.
Chen
,
T.
Sekiguchi
,
T.
Ohyanagi
,
H.
Matsuhata
,
A.
Kinoshita
, and
H.
Okumura
,
J. Electron. Mater.
39
,
684
(
2010
).
7.
M.
Camarda
,
A.
Canino
,
A. La
Magna
,
F. La
Via
,
G.
Feng
,
T.
Kimoto
,
M.
Aoki
, and
H.
Kawanowa
,
Appl. Phys. Lett.
98
,
051915
(
2011
).
8.
G.
Feng
,
J.
Suda
, and
T.
Kimoto
,
Appl. Phys. Lett.
92
,
221906
(
2008
).
9.
G.
Feng
,
J.
Suda
, and
T.
Kimoto
,
Phys. B
404
,
4745
(
2009
).
10.
G.
Feng
,
J.
Suda
, and
T.
Kimoto
,
J. Electron. Mater.
39
,
1166
(
2010
).
11.
G.
Feng
,
J.
Suda
, and
T.
Kimoto
,
Mater. Sci. Forum
615–617
,
245
(
2009
).
12.
K. X.
Liu
,
R. E.
stahlbush
,
S. L.
Maximenko
, and
J. D.
Caldwell
,
Appl. Phys. Lett.
90
,
153503
(
2007
).
13.
A.
Galeckas
,
A.
Hallen
,
S.
Majdi
,
J.
Linnros
, and
P.
Pirouz
,
Phys. Rev. B
74
,
233203
(
2006
).
14.
R. E.
Stahlbush
,
K. X.
Liu
,
Q.
Zhang
, and
J. J.
Sumakeris
,
Mater. Sci. Forum
556–557
,
295
(
2007
).
15.
K. X.
Liu
,
R. E.
Stahlbush
,
M. E.
Twigg
,
J. D.
Caldwell
,
E. R.
Glaser
,
K. D.
Hobart
, and
F. J.
Kub
,
J. Electron. Mater.
36
,
297
(
2007
).
16.
J. D.
Caldwell
,
A.
Giles
,
D.
Lepage
,
D.
Carrier
,
K.
Moumanis
,
B. A.
Hull
,
R. E.
stahlbush
,
R. L.
Myers-Ward
,
J. J.
Dubowski
, and
M.
Verhaegen
,
Appl. Phys. Lett.
102
,
242109
(
2013
).
17.
U.
Lindefelt
,
H.
Iwata
,
S.
Oberg
, and
P. R.
Briddon
,
Phys. Rev. B
67
,
155204
(
2003
).
18.
M. S.
Miao
,
S.
Limpijumnong
, and
W.
Lambrecht
,
Appl. Phys. Lett.
79
,
4360
(
2001
).
19.
M.
Camarda
,
P.
Delugas
,
A.
Canino
,
A.
Severino
,
N.
Piluso
,
A. La
Magna
, and
F. La
Via
,
Mater. Sci. Forum
645–648
,
283
(
2010
).
20.
M.
Camarda
,
A. La
Magna
,
P.
Delugas
, and
F. La
Via
,
Appl. Phys. Express
4
,
25802
(
2011
).
21.
W. J.
Choyke
,
H.
Matsunami
, and
G.
Pens
,
Silicon Carbide: Recent Major Advances
(
Springer
,
Berlin
,
2005
), p.
89
.
22.
A.
Canino
,
M.
Camarda
,
A. La
Magna
, and
F. La
Via
,
Mater. Res. Soc.
1246
,
59
(
2010
).
23.
T.
Miyanagi
,
H.
Tsuchida
,
I.
Kamata
,
T.
Nakamura
, and
K.
Nakayama
,
Appl. Phys. Lett.
89
,
062104
(
2006
).
24.
N.
Hoshino
,
M.
Tajima
,
M.
Naitoh
,
E.
Okuno
, and
S.
Onda
,
Mater. Sci. Forum
600–603
,
349
(
2009
).
25.
T.
Fujimoto
,
T.
Aigo
,
M.
Nakabayashi
,
S.
Sato
,
M.
Katsuno
,
H.
Tsuge
,
H.
Yashiro
,
H.
Hirano
,
T.
Hoshino
, and
W.
Ohashi
,
Mater. Sci. Forum
645–648
,
319
(
2010
).
26.
A.
Canino
,
M.
Camarda
, and
F. La
Via
,
Mater. Sci. Forum
679–680
,
67
(
2011
).
27.
I.
Deretzis
,
M.
Camarda
,
F. La
Via
, and
A. La
Magna
,
Phys. Rev. B
85
,
235310
(
2012
).
28.
J. D.
Caldwell
,
R. E.
Stahlbush
,
M. G.
Ancona
,
O. J.
Glembocki
, and
K. D.
Hobart
,
J. Appl. Phys.
108
,
044503
(
2010
).
29.
S. I.
Maximenko
,
J. A.
Freitas
, Jr.
,
P. B.
Klein
,
A.
Shrivastava
, and
T. S.
Sudarshan
,
Appl. Phys. Lett.
94
,
092101
(
2009
).
30.
S.
Nakashima
,
Y.
Nakatake
,
Y.
Ishida
,
T.
Takahashi
, and
H.
Okumura
,
Physica B
308
,
684
(
2001
).
31.
S.
Rohmfeld
,
M.
Hundhausen
, and
L.
Ley
,
Phys. Status Solidi B
215
,
115
(
1999
).
32.
T.
Mitani
,
S.
Nakashima
,
H.
Okumura
, and
H.
Nakasawa
,
Mater. Sci. Forum
527–529
,
343
(
2006
).
33.
N.
Piluso
,
R.
Anzalone
,
M.
Camarda
,
A.
Severino
,
A. La
Magna
,
G.
D'Arrigo
, and
F. La
Via
,
J. Raman Spectrosc.
44
,
299
(
2013
).
34.
N.
Piluso
,
R.
Anzalone
,
M.
Camarda
,
A.
Severino
,
A. La
Magna
,
G.
D'Arrigo
, and
F. La
Via
,
Mater. Sci. Forum
679–680
,
141
(
2011
).
35.
S.
Nakashima
and
H.
Harima
,
Phys. Status Solidi A
162
,
39
(
1997
).
36.
S.
Nakashima
,
Y.
Nakatake
,
H.
Harima
,
M.
Katsuno
, and
N.
Ohtani
,
Appl. Phys. Lett.
77
,
3612
(
2000
).
37.
T.
Tomita
,
S.
Matsuo
,
T.
Okada
,
T.
Kimoto
,
H.
matsunami
,
T.
Mitani
, and
S.
Nakashima
,
Appl. Phys. Lett.
87
,
241906
(
2005
).
38.
S.
Nakashima
,
T.
Mitani
,
J.
Senzaki
,
H.
Okumura
, and
T.
Yamamoto
,
J. Appl. Phys.
97
,
123507
(
2005
).
39.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors
, 2nd ed. (
Springer-Verlag Berlin Heidelberg
,
New York
,
2003
).
40.
G.
Irmer
,
V. V.
Toporov
,
B. H.
Bairamov
, and
J.
Monecke
,
Phys. Status Solidi B
119
,
595
(
1983
).
41.
H.
Harima
,
S.
Nakashima
, and
T.
Uemura
,
J. Appl. Phys.
78
,
1996
(
1995
).
42.
M.
Chafai
,
A.
Jaouhari
,
A.
Torres
,
R.
Anton
,
E.
Martin
,
J.
Jimenez
, and
W. C.
Mitchel
,
J. Appl. Phys.
90
,
5211
(
2001
).
43.
N.
Piluso
,
A.
Severino
,
M.
Camarda
,
R.
Anzalone
,
A.
Canino
,
G.
Condorelli
,
G.
Abbondanza
, and
F. La
Via
,
Mater. Sci. Forum
645–648
,
255
(
2010
).
44.
H.
Yugami
,
S.
Nakashima
,
A.
Mitsuishi
,
A.
Uemoto
,
M.
Shigeta
,
K.
Furukawa
,
A.
Suzuki
, and
S.
Nakajima
,
J. Appl. Phys.
61
,
354
(
1987
).
45.
N.
Piluso
,
A.
Severino
,
M.
Camarda
,
A.
Canino
,
A. La
Magna
, and
F. La
Via
,
Appl. Phys. Lett.
97
,
142103
(
2010
).
46.
J. D.
Caldwell
,
O. J.
Glembocki
,
S. M.
Prokes
,
E. R.
Glaser
,
K. D.
Hobart
,
D. M.
Hansen
,
G.
Chung
,
A. V.
Bolotnikov
, and
T. S.
Sudarshan
,
J. Appl. Phys.
101
,
093506
(
2007
).
47.
H.
Nather
and
L. G.
Quagliano
,
J. Lumin.
30
,
50
(
1985
).
48.
H.
Yugami
,
S.
Nakashima
,
Y.
Oka
,
M.
Hangyo
, and
A.
Mitsuishi
,
J. Appl. Phys.
60
,
3303
(
1986
).
49.
O. J.
Glembocki
,
M.
Skowronski
,
S. M.
Prokes
,
D. K.
Gaskill
, and
J. D.
Caldwell
,
Mater. Sci. Forum
527–529
,
347
(
2006
).
50.
Z. C.
Feng
,
A. J.
Mascarenhas
,
W. J.
Choyke
, and
J. A.
Powell
,
J. Appl. Phys.
64
,
3176
(
1988
).
51.
J. C.
Burton
,
L.
Sun
,
M.
Pophristic
,
S. J.
Lakacs
,
F. H.
Long
,
Z. C.
Feng
, and
I. T.
Ferguson
,
J. Appl. Phys.
84
,
6268
(
1998
).
52.
S. G.
Sridhara
,
T. J.
Eperjesi
,
R. P.
Devaty
, and
W. J.
Choyke
,
Mater. Sci. Eng. B
61–62
,
229
(
1999
).
53.
H.
Fujiwara
,
T.
Kimoto
,
T.
Tojo
, and
H.
Matsunami
,
Appl. Phys. Lett.
87
,
051912
(
2005
).
54.
M.
Ichimura
,
H.
Tajiri
,
Y.
Morita
,
N.
Yamada
, and
A.
Usami
,
Appl. Phys. Lett.
70
,
1745
(
1997
).
55.
G.
Chung
,
M. J.
Loboda
,
M. F.
MacMillan
,
J.
Wan
, and
D. M.
Hansen
,
Mater. Sci. Forum
556–557
,
323
(
2007
).
56.
T.
Hiyoshi
and
T.
Kimoto
,
Appl. Phys. Express
2
,
041101
(
2009
).
57.
T.
Miyazawa
and
H.
Tsuchida
,
J. Appl. Phys.
113
,
083714
(
2013
).
You do not currently have access to this content.