Spark plasma sintering (SPS) is a powder metallurgy technique that employs the use of fast sintering kinetics to produce final consolidated components in a matter of minutes. In order to use blended powders in SPS to obtain fully alloyed parts, diffusion during sintering must be understood. An investigation into the effects of current on the diffusion of copper and nickel was performed using SPS. Bulk specimens were used to generate diffusion couples in SPS in alternating orientations with respect to the direction of the current. Control samples were produced using a horizontal insertion vacuum furnace. Experiments were performed at temperatures between 850 °C and 1000 °C for 3 h. Concentration profiles were obtained by the use of both energy-dispersive spectroscopy and a Monte Carlo simulated correction curve. Diffusion coefficients and activation energies were calculated for samples produced by SPS and annealing without current. It was shown that, at temperatures near 0.9 Tm, the application of current in SPS inhibits diffusion between copper and nickel due to the re-orientation of electrons caused by the loss of ferromagnetism in nickel. Activation energy for diffusion is, however, decreased due to the temperature gradients arising from the difference in resistivity between the two species.

1.
C.
Rodríguez
,
F.
Belzunce
,
C.
Betegon
,
L.
Goyos
,
L.
Díaz
, and
R.
Torrecillas
,
J. Alloys Compd.
550
,
402
(
2013
).
2.
S.
Paris
,
E.
Gaffet
,
F.
Bernard
, and
Z.
Munir
,
Scr. Mater.
50
,
691
(
2004
).
3.
X.
Li
,
K.
Hu
,
S.
Qu
,
L.
Li
, and
C.
Yang
,
Mater. Sci. Eng., A
599
,
233
(
2014
).
4.
S.-X.
Song
,
Z.
Wang
, and
G.-P.
Shi
,
Ceram. Int.
39
,
1393
(
2013
).
5.
Z.
Munir
,
U.
Anselmi-Tamburini
, and
M.
Ohyanagi
,
J. Mater. Sci.
41
,
763
(
2006
).
6.
T.
Hungria
,
J.
Galy
, and
A.
Castro
,
Adv. Eng. Mater.
11
,
615
(
2009
).
7.
J.
Zhao
,
J.
Garay
,
U.
Anselmi-Tamburini
, and
Z.
Munir
,
J. Appl. Phys.
102
,
114902
(
2007
).
8.
F.
Sauer
and
V.
Freise
,
Z. Elektrochem., Ber. Bunsengesellschaft Phys. Chem.
66
,
353
(
1962
).
9.
W.
Wu
and
J.
Yuan
,
Solid-State Electron.
45
,
2011
(
2001
).
10.
J.
Jiang
,
S.
Bae
, and
S.
Kim
,
IEEE Trans. Magn.
43
,
2836
(
2007
).
11.
A.
Grone
,
J. Phys. Chem. Solids
20
,
88
(
1961
).
12.
M.
Braunovic
and
N.
Alexandrov
,
IEEE Trans. Compon. Packag. Manuf. Technol., Part A
17
,
78
(
1994
).
13.
K.
Matsugi
,
T.
Hatayama
, and
O.
Yanagisawa
,
J. Jpn. Inst. Met.
59
,
740
(
1995
).
14.
L.
Arnaud
,
G.
Reimbold
, and
P.
Waltz
,
Microelectron. Reliab.
39
,
773
(
1999
).
15.
M. E.
Glicksman
,
Diffusion in Solids: Field Theory, Solid-State Principles, and Applications
(
A Wiley-Interscience Publication
, Wiley,
2000
), Vol.
1
.
16.
P.
Horny
,
E.
Lifshin
,
H.
Campbell
, and
R.
Gauvin
,
Microsc. Microanal.
16
,
821
(
2010
).
17.
G. O.
Tronsdal
and
H.
Sørum
,
Phys. Status Solidi B
4
,
493
(
1964
).
18.
K.
Anusavice
and
R.
DeHoff
,
Metall. Trans.
3
,
1279
(
1972
).
19.
K.
Monma
,
H.
Suto
, and
H.
Oikawa
,
J. Jpn. Inst. Met.
28
,
192
196
(
1964
).
20.
I. A.
Blech
,
J. Appl. Phys.
47
,
1203
(
1976
).
22.
M.
Lin
and
C.
Basaran
,
Comput. Mater. Sci.
34
,
82
(
2005
).
23.
J.
Black
,
IEEE Trans. Electron Devices
16
,
338
(
1969
).
24.
C.
Witt
,
C.
Volkert
, and
E.
Arzt
,
Acta Mater.
51
,
49
(
2003
).
25.
R.
Matula
,
N. D.
Analysis
, and
P. U.
Synthesis
,
Electrical Resistivity of Copper, Gold, Palladium, and Silver
(
American Chemical Society
,
1979
).
27.
J.
Callaway
and
C. S.
Wang
,
Phys. Rev. B
7
,
1096
(
1973
).
28.
S.
Piramanayagam
and
T.
Chong
,
Developments in Data Storage: Materials Perspective
(
Wiley
,
2011
).
29.
R. N.
Sinclair
and
B. N.
Brockhouse
,
Phys. Rev.
120
,
1638
(
1960
).
30.
R. D.
Lowde
,
Proc. R. Soc. London, Ser. A
235
,
305
(
1956
).
31.
P.
Tannenwald
and
R.
Weber
,
Phys. Rev.
121
,
715
(
1961
).
32.
D.
Stancil
and
A.
Prabhakar
,
Spin Waves: Theory and Applications
(
Springer
,
2009
).
33.
N.
Mott
and
H.
Jones
,
The Theory of the Properties of Metals and Alloys
, Dover Books on Physics and Mathematical Physics (
Dover Publications
,
1958
), p.
326
.
34.
A.
Nilsson
,
L.
Pettersson
, and
J.
Norskov
,
Chemical Bonding at Surfaces and Interfaces
(
Elsevier Science
,
2011
).
36.
J.
Friedel
,
Can. J. Phys.
34
,
1190
(
1956
).
37.
P. de Faget de
Casteljau
and
J.
Friedel
,
J. Phys. Radium
17
,
27
(
1956
).
38.
D. R.
Salahub
and
F.
Raatz
,
Int. J. Quantum Chem.
26
,
173
(
1984
).
39.
R.
Poerschke
,
U.
Theis
, and
H.
Wollenberger
,
J. Phys. F: Met. Phys.
10
,
67
(
1980
).
40.
S.
Chikazumi
and
C.
Graham
,
Physics of Ferromagnetism 2e
, International Series of Monographs on Physics (
Oxford University Press
,
Oxford
,
2009
).
41.
G.
Bertrand
,
M.
Lallemant
, and
G.
Watelle
,
J. Therm. Anal.
13
,
525
(
1978
).
42.
E.
Brandes
and
G.
Brook
,
Smithells Metals Reference Book
, 7th ed. (
Elsevier
,
1998
), pp.
23.1
23.5
.
You do not currently have access to this content.