In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm × 20 mm × 2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

1.
J. S.
Batchelder
,
A. H.
Zewail
, and
T.
Cole
,
Appl. Opt.
18
,
3090
3110
(
1979
).
2.
A.
Goetzberger
and
W.
Greubel
,
Appl. Phys.
14
,
123
139
(
1977
).
3.
V.
Wittwer
,
A.
Goetzberger
,
K.
Heidler
,
A.
Zastrow
, and
A.
Goetzberger
,
Theor. J. Lumin.
24/25
,
873
876
(
1981
).
4.
A. A.
Earp
,
G. B.
Smith
,
J.
Franklin
, and
P.
Swift
,
Sol. Energy Mater. Sol. Cells
84
,
411
426
(
2004
).
5.
A. J.
Chatten
,
K. W. J.
Barnham
,
B. F.
Buxton
,
N. J.
Ekins-Daukes
, and
M. A.
Malik
,
Semiconductor
38
,
909
917
(
2004
).
6.
T.
Wnag
,
J.
Zhang
,
W.
Ma
,
Y.
Luo
,
L.
Wang
,
Z.
Hu
,
X.
Wang
,
G.
Zou
, and
Q.
Zhang
,
Sol. Energy
85
,
2571
2579
(
2011
).
7.
A. M.
Velazquez
,
C. L.
Mulder
,
N. J.
Thomson
,
T. L.
Andrew
,
P. D.
Reusswig
,
C.
Rotschild
, and
M. A.
Baldo
,
Energy Environ. Sci.
6
,
72
75
(
2013
).
8.
R. W.
Olsen
,
R. F.
Loring
, and
M. D.
Fayer
,
Appl. Opt.
20
,
2934
2940
(
1981
).
9.
S.
Tsoi
,
D. J.
Broer
,
C. W. M.
Bastiaansen
, and
M. G.
Debije
,
Opt. Express
18
,
A536
A543
(
2010
).
10.
M. G.
Debije
and
P. P. C.
Verbunt
,
Adv. Energy Mater.
2
,
12
35
(
2012
).
11.
J.
Gutmann
,
M.
Peters
,
B.
Bläsi
,
M.
Hermle
,
A.
Gombert
,
H.
Zappe
, and
J. C.
Goldschmidt
,
Opt. Express
20
(
S2
),
A157
A167
(
2012
).
12.
J. C.
Goldschmidt
,
M.
Peters
,
A.
Bösch
,
H.
Helmers
,
F.
Dimroth
,
S. W.
Glunz
, and
G.
Willeke
,
Sol. Energy Mater. Sol. Cells
93
,
176
182
(
2009
).
13.
N. C.
Giebink
,
G. P.
Wiederrecht
, and
M. R.
Wasielewski
,
Nat. Photonics
5
,
694
701
(
2011
).
14.
F.
Meinardi
,
A.
Colombo
,
K. A.
Velizhanin
,
R.
Simonutti
,
M.
Lorenzon
,
L.
Beverina
,
R.
Viswanatha
,
V. I.
Klimov
, and
S.
Brovelli
,
Nat. Photonics
8
,
392
399
(
2014
).
15.
Y.
Zhao
,
G. A.
Meek
,
B. G.
Levine
, and
R. R.
Lunt
, “
Near-
infrared harvesting transparent luminescent solar c
oncentrators
,”
Adv. Opt. Mater.
2
,
606
(
2014
).
16.
B.
Balaban
,
S.
Doshay
,
M.
Osborn
,
Y.
Rodriguez
, and
S. A.
Carter
,
J. Lumin.
146
,
256
262
(
2014
).
17.
C. L.
Mulder
,
P. D.
Reusswig
,
A. M.
Velazquez
,
H.
Kim
,
C.
Rotschild
, and
M. A.
Baldo
,
Opt. Express
18
,
A79
A90
(
2010
).
18.
A.
Bozzola
,
S. Flores
Daorta
,
M.
Galli
,
M.
Patrini
,
L. C.
Andreani
,
A.
Alessi
,
R.
Fusco
,
A.
Proto
, and
P.
Scudo
,
Proceedings of 26th European Photovoltaic Solar Energy Conference
,
2011
, pp.
259
263
.
19.
S. F.
Daorta
,
M.
Liscidini
,
L. C.
Andreani
,
P.
Scuedo
, and
R.
Fusco
,
Proceedings of 26th European Phtovoltaic Solar Energy Conference
,
2011
, pp.
259
263
.
20.
T.
Rist
,
M.
Hermle
, and
J. C.
Goldschmidt
,
Proceedings of 26ᵗʰ European Photovoltaic Solar Energy Conference
,
2011
, pp.
441
445
.
21.
A.
Cuevas
,
A.
Luque
, and
J. M.
Ruiz
,
Int. Electrton Devices Meet.
25
,
314
317
(
1979
).
22.
E. E.
Bende
,
L. H.
Slooff
,
A. R.
Burgers
,
W. G. J. H. M.
van Sark
, and
M.
Kennedy
,
Proceedings of 23rd European Photovoltaic Solar Energy Conference
, September,
2008
, pp.
461
469
.
23.
A.
Moehlecke
,
F. S.
Febras
, and
I.
Zanesco
,
Sol. Energy
96
,
253
262
(
2013
).
24.
R.
Hezel
,
Prog. Photovolt. Res. Appl.
11
,
549
556
(
2003
).
25.
T.
Joge
,
Y.
Eguchi
,
Y.
Imazu
,
I.
Araki
,
T.
Uetmatsu
, and
K.
Matsukuma
,
Electron. Eng. Jpn
149
,
32
42
(
2004
).
26.
J. C.
Goldschmidt
,
M.
Peters
,
M.
Hermle
, and
S. W.
Glunz
,
J. Appl. Phys.
105
,
114911
(
2009
).
27.
J. C.
Goldschmidt
,
S. W.
Glunz
,
A.
Gombert
, and
G.
Willeke
,
Proceedings of the 21st European Photovoltaic Solar Energy Conference
,
Dresden, Germany
,
2006
, pp.
107
110
.
28.
L. H.
Slooff
,
E. E.
Bende
,
A. R.
Burgers
,
T.
Budel
,
M.
Pracettoni
,
R. P.
Kenny
,
E. D.
Dunlop
, and
A.
Büchtemann
,
Phys. Status Solidi
2
(
6
),
257
259
(
2008
).
29.
D. J.
Farrell
and
M.
Yoshida
,
Prog. Photovolt. Res. Appl.
20
,
93
99
(
2012
).
30.
L.
Desmet
,
A. J. M.
Ras
,
D. K. G. de
Boer
, and
M. G.
Debije
,
Opt. Lett.
37
,
3087
3089
(
2012
).
You do not currently have access to this content.