When ZnO nanobelts are exposed to a high-dose electron probe of several nanometers to hundred nanometers in diameter inside a transmission electron microscope, due to the radiolysis effect, part of oxygen atoms will be ejected into the vacuum and leaving a Zn-ion rich surface with a pit appearance at both the electron-entrance and electron-exit surfaces. At the same time, a temperature distribution is created around the electron probe due to local beam heating effect, which generates a unidirectional pyroelectric field. This pyroelectric field is strong enough to drive Zn ions moving along its positive c-axis direction as interstitial ions. In the first case, for the ZnO nanobelts with c-axis lie in their large surfaces, defects due to the aggregation of Zn interstitial ions will be formed at some distances of 30–50 nm approximately along the c-axis direction from the electron beam illuminated area. Alternatively, for the ZnO nanobelts with ±(0001) planes as their large surfaces, the incident electron beam is along its c-axis and the generated pyroelectric field will drive the interstitial Zn-ions to aggregate at the Zn terminated (0001) surface where the local electrical potential is the lowest. Such electron beam induced damage in ZnO nanostructures is suggested as a result of Zn ion diffusion driven by the temperature gradient induced pyroelectric field along c-axis. Our study shows a radiation damage caused by electron beam in transmission electron microscopy, especially when the electron energy is high.

1.
P.
Fei
,
P. H.
Yeh
,
J.
Zhou
,
S.
Xu
,
Y. F.
Gao
,
J. H.
Song
,
Y. D.
Gu
,
Y. Y.
Huang
, and
Z. L.
Wang
,
Nano Lett.
9
,
3435
(
2009
).
2.
D.
Kaelblein
,
R. T.
Weitz
,
H. J.
Bottcher
,
F.
Ante
,
U.
Zschieschang
,
K.
Kern
, and
H.
Klauk
,
Nano Lett.
11
,
5309
(
2011
).
3.
Z. W.
Pan
,
Z. R.
Dai
, and
Z. L.
Wang
,
Science
291
,
1947
(
2001
).
4.
J. I.
Sohn
,
S. S.
Choi
,
S. M.
Morris
,
J. S.
Bendall
,
H. J.
Coles
,
W. K.
Hong
,
G.
Jo
,
T.
Lee
, and
M. E.
Welland
,
Nano Lett.
10
,
4316
(
2010
).
5.
X. D.
Wang
,
J.
Zhou
,
J. H.
Song
,
J.
Liu
,
N. S.
Xu
, and
Z. L.
Wang
,
Nano Lett.
6
,
2768
(
2006
).
6.
7.
Z. L.
Wang
,
J. Phys. Chem. Lett.
1
,
1388
(
2010
).
8.
Z. L.
Wang
and
J. H.
Song
,
Science
312
,
242
(
2006
).
9.
J.
Zhou
,
P.
Fei
,
Y. D.
Gu
,
W. J.
Mai
,
Y. F.
Gao
,
R.
Yang
,
G.
Bao
, and
Z. L.
Wang
,
Nano Lett.
8
,
3973
(
2008
).
10.
Y. F.
Hu
,
Y. L.
Chang
,
P.
Fei
,
R. L.
Snyder
, and
Z. L.
Wang
,
ACS Nano
4
,
1234
(
2010
).
11.
X. N.
Wen
,
W. Z.
Wu
, and
Z. L.
Wang
,
Nano Energy
2
,
1093
(
2013
).
12.
J.
Albertsson
,
S. C.
Abrahams
, and
A.
Kvick
,
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
45
,
34
(
1989
).
13.
C. P.
Ye
,
T.
Tamagawa
, and
D. L.
Polla
,
J. Appl. Phys.
70
,
5538
(
1991
).
14.
Y.
Yang
,
W. X.
Guo
,
K. C.
Pradel
,
G.
Zhu
,
Y. S.
Zhou
,
Y.
Zhang
,
Y. F.
Hu
,
L.
Lin
, and
Z. L.
Wang
,
Nano Lett.
12
,
2833
(
2012
).
15.
Y.
Yang
,
K. C.
Pradel
,
Q. S.
Jing
,
J. M.
Wu
,
F.
Zhang
,
Y. S.
Zhou
,
Y.
Zhang
, and
Z. L.
Wang
,
ACS Nano
6
,
6984
(
2012
).
16.
G.
Donnay
,
Can. Mineral.
23
,
655
(
1985
).
17.
R. F.
Egerton
,
R.
McLeod
,
F.
Wang
, and
M.
Malac
,
Ultramicroscopy
110
,
991
(
2010
).
18.
R. F.
Egerton
,
P.
Li
, and
M.
Malac
,
Micron
35
,
399
(
2004
).
19.
R. F.
Egerton
,
Microsc. Res. Tech.
75
,
1550
(
2012
).
20.
Y. Y.
Loginov
,
P. D.
Brown
, and
N.
Thompson
,
Phys. Status Solidi A
126
,
63
(
1991
).
21.
Y. M.
Xu
,
L. A.
Shi
,
X. T.
Zhang
,
K. W.
Wong
, and
Q.
Li
,
Micron
42
,
290
(
2011
).
22.
K. A.
Mkhoyan
and
J.
Silcox
,
Appl. Phys. Lett.
82
,
859
(
2003
).
23.
24.
N.
Jiang
,
J. Phys. D: Appl. Phys.
46
,
305502
(
2013
).
25.
T.
Yamamoto
,
T.
Hirayama
,
K.
Fukunaga
, and
Y.
Ikuhara
,
Nanotechnology
15
,
1324
(
2004
).
26.
M. R.
Mccartney
,
P. A.
Crozier
,
J. K.
Weiss
, and
D. J.
Smith
,
Vacuum
42
,
301
(
1991
).
27.
D. E.
Diaz-Droguett
,
A.
Zuniga
,
G.
Solorzano
, and
V. M.
Fuenzalida
,
J. Nanopart. Res.
14
,
679
(
2012
).
28.
M. R.
Mccartney
and
D. J.
Smith
,
Surf. Sci.
250
,
169
(
1991
).
29.
T. J.
Bullough
,
Philos. Mag. A
75
,
69
(
1997
).
30.
N.
Jiang
and
J. C. H.
Spence
,
Ultramicroscopy
113
,
77
(
2012
).
31.
D. G.
Howitt
,
S. J.
Chen
,
B. C.
Gierhart
,
R. L.
Smith
, and
S. D.
Collins
,
J. Appl. Phys.
103
,
024310
(
2008
).
32.
H. M.
Kim
,
M. H.
Lee
, and
K. B.
Kim
,
Nanotechnology
22
,
275303
(
2011
).
33.
S.
Tehuacanero-Cuapa
,
R.
Palomino-Merino
, and
J.
Reyes-Gasga
,
Radiat. Phys. Chem.
87
,
59
(
2013
).
34.
G. S.
Chen
and
C. J.
Humphreys
,
J. Appl. Phys.
85
,
148
(
1999
).
35.
Y.
Ding
and
Z. L.
Wang
,
J. Phys. Chem. B
108
,
12280
(
2004
).
36.
P.
Erhart
and
K.
Albe
,
Appl. Phys. Lett.
88
,
201918
(
2006
).
37.
K.
Arakawa
,
M.
Hatanaka
,
E.
Kuramoto
,
K.
Ono
, and
H.
Mori
,
Phys. Rev. Lett.
96
,
125506
(
2006
).
38.
D. M.
Rowe
,
Thermoelectrics Handbook: Macro to Nano
(
Taylor & Francis
,
2006
).
39.
T. B.
Bateman
,
J. Appl. Phys.
33
,
3309
(
1962
).
40.
F.
Oba
,
M.
Choi
,
A.
Togo
, and
I.
Tanaka
,
Sci. Technol. Adv. Mater.
12
,
034302
(
2011
).
41.
A.
Janotti
and
C. G.
Van de Walle
,
J. Cryst. Growth
287
,
58
(
2006
).
42.
A.
Janotti
and
C. G.
Van de Walle
,
Phys. Rev. B
76
,
165202
(
2007
).
You do not currently have access to this content.