Electromagnetic properties of Permendur (Fe50Co50 alloy) granular composite materials containing flaky particle have been studied from the RF to microwave frequency range. Properties of the flaky particle composites were compared with the spherical particle ones. The electrical conductivity of the flaky particle composite was higher than that of the spherical particle composite at the same particle content. An insulator to metal transition was observed at the percolation threshold φc in both composites. The φc of the flaky particle composite was lower than that of the spherical one. The relative complex permittivity indicates that the insulating state has dielectric properties. For the spherical particle composite, the permittivity enhancement caused by particle cluster formation can be described by the effective cluster model (ECM). The enhancement of the dielectric constant in the flaky particle composite is larger than the ECM prediction. A negative permittivity spectrum indicating a low frequency plasmonic state was observed in the metallic 70 vol. % flaky particle composite. The relative complex permeability spectra of the flaky particle composite are different from those of the spherical one. The flaky particle composite shows a larger permeability value and lower permeability dispersion frequency than the spherical particle composite. Negative permeability spectra were observed in the both composite materials. The negative permeability frequency band of the flaky particle composite is lower than that of the spherical particle composite owing to the demagnetizing field effect.

1.
V. G.
Veselago
,
Sov. Phys. Usp.
10
,
509
(
1968
).
2.
N.
Seddon
and
T.
Bearpark
,
Science
302
,
1537
(
2003
).
3.
J. B.
Pendry
,
A. J.
Holden
,
D. J.
Robbins
, and
W. J.
Stewart
,
IEEE Trans. Microwave Theory Tech.
47
,
2075
(
1999
).
4.
R. A.
Shelby
,
D. R.
Smith
, and
S.
Schultz
,
Science
292
,
77
(
2001
).
5.
S. T.
Chui
and
L.
Hu
,
Phys. Rev. B
65
,
144407
(
2002
).
6.
T.
Kasagi
,
T.
Tsutaoka
, and
K.
Hatakeyama
,
Appl. Phys. Lett.
88
,
172502
(
2006
).
7.
C.
Mitsumata
and
S.
Tomita
,
Appl. Phys. Lett.
91
,
223104
(
2007
).
8.
A. N.
Lagarkov
,
S. M.
Matytsin
,
K. N.
Rozanov
, and
A. K.
Sarychev
,
J. Appl. Phys.
84
,
3806
(
1998
).
9.
Z.-C.
Shi
,
R.-H.
Fan
,
K.-L.
Yan
,
K.
Sun
,
M.
Zhang
,
C.-G.
Wang
,
X.-F.
Liu
, and
X.-H.
Zhang
,
Adv. Funct. Mater.
23
,
4123
(
2013
).
10.
T.
Tsutaoka
,
K.
Fukuyama
,
H.
Kinoshita
,
T.
Kasagi
,
S.
Yamamoto
, and
K.
Hatakeyama
,
Appl. Phys. Lett.
103
,
261906
(
2013
).
11.
Z.-C.
Shi
,
R.-H.
Fan
,
Z.-D.
Zhang
,
K.-L.
Yan
,
X.-H.
Zhang
,
K.
Sun
,
X.-F.
Liu
, and
C.-G.
Wang
,
J. Mater. Chem. C
1
,
1633
(
2013
).
12.
T.
Kasagi
,
T.
Tsutaoka
, and
K.
Hatakeyama
,
IEEE Trans. Magn.
35
,
3424
(
1999
).
13.
D. S.
McLachlan
,
M.
Blaszkiewicz
, and
R. E.
Newnham
,
J. Am. Ceram. Soc.
73
,
2187
(
1990
).
14.
T.
Kasagi
,
T.
Tsutaoka
, and
K.
Hatakeyama
, in
Proceedings of the International Conference on Ferrites (ICF-9)
,
2004
, p. 653.
15.
H. S.
Gokturk
,
T. J.
Fiske
, and
D. M.
Kalyon
,
J. Appl. Polym. Sci.
50
,
1891
(
1993
).
17.
J.
Li
and
J.-K.
Kim
,
Comp. Sci. Technol.
67
,
2114
(
2007
).
18.
T.
Tsutaoka
,
A.
Tsurunaga
,
T.
Kasagi
,
K.
Hatakeyama
, and
M. Y.
Koledintseva
, in
Proceedings of IEEE International Symposium on EMC
,
2012
, p.
411
.
19.
T.
Kasagi
,
T.
Tsutaoka
,
A.
Tsurunaga
, and
K.
Hatakeyama
,
J. Korean Phys. Soc.
62
(
12
),
2113
(
2013
).
20.
S.
Yoshida
,
M.
Sato
,
E.
Sugawara
, and
Y.
Shimada
,
J. Appl. Phys.
85
(
8
),
4636
(
1999
).
21.
P. H.
Zhou
,
L. J.
Deng
,
J. L.
Xie
, and
D. F.
Liang
,
J. Alloy Compd.
448
,
303
(
2008
).
22.
R.
Han
,
L.
Qiao
,
T.
Wang
, and
F.-S.
Li
,
J. Alloy. Compd.
509
,
2734
(
2011
).
23.
M. A.
Abshinova
,
S. M.
Matitsine
,
L.
Liu
,
C. R.
Deng
, and
L. B.
Kong
,
J. Phys. Conf. Ser.
266
,
012025
(
2011
).
24.
D.
Kodama
,
K.
Shinoda
,
R.
Kasuya
,
M.
Doi
, and
B.
Jeyadevan
,
J. Appl. Phys.
111
,
07A331
(
2012
).
25.
T.
Kasagi
,
T.
Tsutaoka
,
A.
Tsurunaga
, and
K.
Hatakeyama
,
J. Phys. Conf. Ser.
200
,
082012
(
2010
).
26.
T.
Tsutaoka
,
T.
Kasagi
,
S.
Yamamoto
, and
K.
Hatakeyama
,
Appl. Phys. Lett.
102
,
181904
(
2013
).
27.
A.
Bose
,
S.
Basu
,
S.
Banerjee
, and
D.
Chakravorty
,
J. Appl. Phys.
98
,
074307
(
2005
).
28.
29.
W. T.
Doyle
and
I. S.
Jacobs
,
Phys. Rev. B
42
,
9319
(
1990
).
30.
W. T.
Doyle
and
I. S.
Jacobs
,
J. Appl. Phys.
71
(
8
),
3926
(
1992
).
31.
O.
Acher
and
S.
Dubourg
,
Phys. Rev. B
77
,
104440
(
2008
).
32.
H.
Zijlstra
,
Permanent Magnets; Theory in Ferromagnetic Materials
, edited by
E. P.
Wohlfarth
(
North-Holland Publishing Company
,
Amsterdam
,
1982
).
33.
M. Y.
Koledintseva
,
J.
Xu
,
S.
De
,
J. L.
Drewniak
,
Y.
He
, and
R.
Johnson
,
IEEE Trans. Magn.
47
(
2
),
317
(
2011
).
34.
J. C. Maxwell
Garnet
,
Philos. Trans. Roy. Soc. London, Ser. A
203
,
385
(
1904
).
35.
E. G.
Visser
and
M. T.
Johnson
,
J. Magn. Magn. Mater.
101
(
1–3
),
143
(
1991
).
36.
T.
Tsutaoka
,
J. Appl. Phys.
93
(
5
),
2789
(
2003
).
You do not currently have access to this content.