Recovery and grain growth behavior is investigated systematically for the nanocrystalline thermoelectric compound bismuth telluride, synthesized by mechanical alloying. During annealing treatments at elevated temperatures, structural evolution is tracked using x-ray diffraction, electron microscopy and calorimetry. Below a homologous temperature of about 0.6Tm, grain growth occurs slowly with an activation energy of 89 kJ/mol. However above this temperature grain growth becomes more rampant with an activation energy of 242 kJ/mol. The transition is attributed to a shift from a relaxation or recovery process that includes some reordering of the grain boundary structure, to a more conventional diffusionally-limited grain growth process. By extrapolating the measured grain growth and microstrain evolution kinetics, a thermal budget map is constructed, permitting recommendations for improving the thermoelectric properties of nanocrystalline materials processed via a powder route.

1.
B.
Poudel
,
Q.
Hao
,
Y.
Ma
,
Y.
Lan
,
A.
Minnich
,
B.
Yu
,
X.
Yan
,
D.
Wang
,
A.
Muto
,
D.
Vashaee
,
X.
Chen
,
J.
Liu
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Science
320
,
634
(
2008
).
2.
H. J.
Goldsmid
and
A. W.
Penn
,
Phys. Lett. A
27
,
523
(
1968
).
3.
C.-N.
Liao
,
Y.-C.
Wang
, and
H.-S.
Chu
,
J. Appl. Phys.
104
,
104312
(
2008
).
4.
M.
Takashiri
,
K.
Miyazaki
,
S.
Tanaka
,
J.
Kurosaki
,
D.
Nagai
, and
H.
Tsukamoto
,
J. Appl. Phys.
104
,
084302
(
2008
).
5.
X.
Tang
,
W.
Xie
,
H.
Li
,
W.
Zhao
,
Q.
Zhang
, and
M.
Niino
,
Appl. Phys. Lett.
90
,
012102
(
2007
).
6.
Y.
Lan
,
B.
Poudel
,
Y.
Ma
,
D.
Wang
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
9
,
1419
(
2009
).
7.
8.
D.-H.
Kim
and
T.
Mitani
,
J. Alloys Compd.
399
,
14
(
2005
).
9.
J.
Beck
,
M.
Alvarado
,
D.
Nemir
,
M.
Nowell
,
L.
Murr
, and
N.
Prasad
,
J. Electron. Mater.
41
,
1595
(
2012
).
10.
C.
Suryanarayana
,
Int. Mater. Rev.
40
,
41
(
1995
).
11.
J.
Lian
,
R. Z.
Valiev
, and
B.
Baudelet
,
Acta Metall. Mater.
43
,
4165
(
1995
).
12.
B. S.
Murty
,
M. K.
Datta
, and
S. K.
Pabi
,
Sadhana
28
,
23
(
2003
).
13.
C. C.
Koch
,
J. Mater. Sci.
42
,
1403
(
2007
).
14.
R. A.
Andrievski
,
J. Mater. Sci.
49
,
1449
(
2014
).
15.
R.
Birringer
,
Mater. Sci. Eng., A
117
,
33
(
1989
).
16.
M.
Chauhan
and
F. A.
Mohamed
,
Mater. Sci. Eng., A
427
,
7
(
2006
).
17.
Y.
Estrin
,
G.
Gottstein
, and
L.
Shvindlerman
,
Scr. Mater.
41
,
385
(
1999
).
18.
U.
Czubayko
,
V. G.
Sursaeva
,
G.
Gottstein
, and
L. S.
Shvindlerman
,
Acta Mater.
46
,
5863
(
1998
).
19.
C. E.
Krill
,
L.
Helfen
,
D.
Michels
,
H.
Natter
,
A.
Fitch
,
O.
Masson
, and
R.
Birringer
,
Phys. Rev. Lett.
86
,
842
(
2001
).
20.
C. H.
Moelle
and
H. J.
Fecht
,
Nanostructured Mater.
6
,
421
(
1995
).
21.
Á.
Révész
,
T.
Ungár
,
A.
Borbély
, and
J.
Lendvai
,
Nanostructured Mater.
7
,
779
(
1996
).
22.
T. R.
Malow
and
C. C.
Koch
,
Acta Mater.
45
,
2177
(
1997
).
23.
H.
Natter
,
M.
Schmelzer
,
M.-S.
Loffler
,
C. E.
Krill
,
A.
Fitch
, and
R.
Hempelmann
,
J. Phys. Chem. B
104
,
2467
(
2000
).
24.
F.
Ebrahimi
and
H.
Li
,
Scr. Mater.
55
,
263
(
2006
).
25.
B.
Zuo
and
T.
Sritharan
,
Acta Mater.
53
,
1233
(
2005
).
26.
F. J.
Humphreys
and
M.
Hatherly
,
Recrystallization and Related Annealing Phenomena
(
Elsevier
,
2004
).
27.
D.
Jang
and
M.
Atzmon
,
J. Appl. Phys.
99
,
083504
(
2006
).
28.
A. J.
Detor
and
C. A.
Schuh
,
J. Mater. Res.
22
,
3233
(
2007
).
29.
G. D.
Hibbard
,
U.
Erb
,
K. T.
Aust
,
U.
Klement
, and
G.
Palumbo
,
Mater. Sci. Forum
386–388
,
387
(
2002
).
30.
A.
Tschope
,
R.
Birringer
, and
H.
Gleiter
,
J. Appl. Phys.
71
,
5391
(
1992
).
32.
R. W.
Cahn
,
M.
Takeyama
,
J. A.
Horton
, and
C. T.
Liu
,
J. Mater. Res.
6
,
57
(
1991
).
33.
K. W.
Liu
and
F.
Mücklich
,
Mater. Sci. Eng. A
329–331
,
112
(
2002
).
34.
S. A.
Humphry-Baker
and
C. A.
Schuh
,
Scr. Mater.
65
,
516
(
2011
).
35.
S. A.
Humphry-Baker
and
C. A.
Schuh
,
Acta Mater.
75
,
167
(
2014
).
36.
S.
Nakajima
,
J. Phys. Chem. Solids
24
,
479
(
1963
).
37.
J.
Burke
and
D.
Turnbull
,
Prog. Met. Phys.
3
,
220
(
1952
).
38.
L.
Lu
,
N. R.
Tao
,
L. B.
Wang
,
B. Z.
Ding
, and
K.
Lu
,
J. Appl. Phys.
89
,
6408
(
2001
).
39.
H.
Gleiter
,
Phys. Status Solidi B
172
,
41
(
1992
).
40.
H.
Gleiter
,
Prog. Mater. Sci.
33
,
223
(
1989
).
41.
H.
Fecht
,
E.
Hellstern
,
Z.
Fu
, and
W.
Johnson
,
Metall. Mater. Trans. A
21
,
2333
(
1990
).
42.
J.
Eckert
,
J. C.
Holzer
,
C. E.
Krill
, and
W. L.
Johnson
,
J. Mater. Res.
7
,
1751
(
1992
).
43.
E.
Hellstern
,
H. J.
Fecht
,
Z.
Fu
, and
W. L.
Johnson
,
J. Mater. Res.
4
,
1292
(
1989
).
44.
H.-J.
Fecht
,
Nanostructured Mater.
6
,
33
(
1995
).
45.
R. J.
McElroy
and
Z. C.
Szkopiak
,
Int. Metall. Rev.
17
,
175
(
1972
).
46.
Z.-P.
Guan
and
D. C.
Dunand
,
Mater. Sci. Eng. A
565
,
321
(
2013
).
47.
N.
Peranio
and
O.
Eibl
,
Phys. Status Solidi A
206
,
42
(
2009
).
48.
L. C.
Chen
and
F.
Spaepen
,
J. Appl. Phys.
69
,
679
(
1991
).
49.
L. E.
Murr
,
Interfacial Phenomena in Metals and Alloys
(
Addison-Wesley Educational Publishers Inc
,
Reading, MA
,
1975
).
50.
A. A.
Nazarov
,
A. E.
Romanov
, and
R. Z.
Valiev
,
Nanostructured Mater.
4
,
93
(
1994
).
51.
A.
Hashibon
and
C.
Elsässer
,
Phys. Rev. B
84
,
144117
(
2011
).
52.
M. W.
Oh
,
J. H.
Son
,
B. S.
Kim
,
S. D.
Park
,
B. K.
Min
, and
H. W.
Lee
,
J. Appl. Phys.
115
,
133706
(
2014
).
53.
J. H.
Son
,
M. W.
Oh
,
B. S.
Kim
,
S. D.
Park
,
B. K.
Min
,
M. H.
Kim
, and
H. W.
Lee
,
J. Alloys Compd.
566
,
168
(
2013
).
54.
E.
Koukharenko
,
N.
Fréty
,
G.
Nabias
,
V. G.
Shepelevich
, and
J. C.
Tedenac
,
J. Cryst. Growth
209
,
773
(
2000
).
55.
T.
Spassov
and
U.
Köster
,
J. Mater. Sci.
28
,
2789
(
1993
).
56.
K.
Isonishi
and
K.
Okazaki
,
J. Mater. Sci.
28
,
3829
(
1993
).
57.
H. J.
Höfler
and
R. S.
Averback
,
Scr. Metall. Mater.
24
,
2401
(
1990
).
58.
L. Z.
Zhou
and
J. T.
Guo
,
Scr. Mater.
40
,
139
(
1998
).
59.
60.
F.
Zhou
,
J.
Lee
, and
E. J.
Lavernia
,
Scr. Mater.
44
,
2013
(
2001
).
You do not currently have access to this content.