The present work reports on the effect of Tb3+ doping on the luminescence and photocatalytic performance of nano-structured titania derived through a sol-gel route. X-ray diffraction patterns have revealed the existence of anatase phase with and without Tb3+ doping and with an improved orientation factor along (004) and (200) planes. Transmission electron microscopy and selective area electron diffraction studies, while exhibiting ample poly-crystallinity feature, have predicted an average particle size of ∼9 nm and ∼6 nm for the un-doped and 5% Tb3+ doped nano-titania samples; respectively. Apart from emissions accompanied by different types of defects, Tb3+ related transitions, such as, 5D37F5, 5D37F4, and 5D47F6 were identified in the photoluminescence spectra. Brunauer-Emmett-Teller surface area analysis, as carried out on a Tb3+ doped nano-titania system, has demonstrated a more-open hysteretic loop owing to significant difference of N2 adsorption/desorption rates. The photocatalytic activity of nano-titania, as evaluated from the nature of degradation of methyl orange under UV illumination, exhibited the highest efficiency for a Tb3+ doping level of 2.5%. The augmented photocatalytic degradation has also been discussed in the light of a model based on pseudo first-order kinetics.

1.
B.
O'Regan
and
M.
Grätzel
,
Nature
353
,
737
(
1991
).
2.
C. J.
Barbé
,
F.
Arendse
,
P.
Comte
,
M.
Jirousek
,
F.
Lenzmann
,
V.
Shklover
, and
M.
Grätzel
,
J. Am. Ceram. Soc.
80
,
3157
(
1997
).
3.
E. A.
Rozhkova
,
I.
Ulasov
,
B.
Lai
,
N. M.
Dimitrijevic
,
M. S.
Lesniak
, and
T.
Rajh
,
Nano Lett.
9
,
3337
(
2009
).
4.
B.
Karunagaran
,
P.
Uthirakumar
,
S. J.
Chung
,
S.
Velumani
, and
E. K.
Suh
,
Mater. Charact.
58
,
680
(
2007
).
5.
K.
Hashimoto
,
H.
Irie
, and
A.
Fujishima
,
Jpn. J. Appl. Phys., Part 1
44
,
8269
(
2005
).
6.
O.
Carp
,
C. L.
Huisman
, and
A.
Reller
,
Prog. Solid State Chem.
32
,
33
(
2004
).
7.
K.
Tanaka
,
M. F. V.
Capule
, and
T.
Hisanaga
,
Chem. Phys. Lett.
187
,
73
(
1991
).
8.
C. F.
Lin
,
C. H.
Wu
, and
Z. N.
Onn
,
J. Hazard. Mater.
154
,
1033
(
2008
).
9.
A. L.
Lisebigler
,
G.
Lu
, and
J. T.
Yates
,
Chem. Rev.
95
,
735
(
1995
).
10.
B.
Choudhury
,
B.
Borah
, and
A.
Choudhury
,
Photochem. Photobiol.
88
(
2
),
257
(
2012
).
11.
Z.
Zhang
,
C. C.
Wang
,
R.
Zakaria
, and
J. Y.
Ying
,
J. Phys. Chem. B
102
,
10871
(
1998
).
12.
M. J.
Weber
,
Nucl. Instrum. Methods Phys. Res., Sect. A
527
,
9
(
2004
).
13.
N.
Paul
and
D.
Mohanta
,
J. Mater. Res.
28
(
11
),
1471
(
2013
).
14.
J.
Liqiang
,
Q.
Yichun
,
W.
Baiqi
,
L.
Shudana
,
J.
Baojianga
,
Y.
Libina
,
F.
Weia
,
F.
Hongganga
, and
S.
Jiazhong
,
Sol. Energy Mater. Sol. Cells
90
,
1773
(
2006
).
15.
H.
Ohsaki
,
N.
Kanai
,
Y.
Fukunaga
,
M.
Suzuki
,
T.
Watanabe
, and
K.
Hashimoto
,
Thin Solid Films
502
,
138
(
2006
).
16.
A.
Bumajdad
and
M.
Madkour
,
Phys. Chem. Chem. Phys.
16
,
7146
(
2014
).
17.
M.
Saif
and
M. S. A.
Abdel-Mottale
,
Inorg. Chim. Acta
360
,
2863
(
2007
).
18.
Y.
Liao
,
W.
Que
,
Q.
Jia
,
Y.
He
,
J.
Zhang
, and
P.
Zhong
,
J. Mater. Chem.
22
(
16
),
7937
(
2012
).
19.
F. K.
Lotgering
,
Inorg. Nucl. Chem.
9
,
113
(
1959
).
20.
A.
Golubović
,
M.
Šćepanović
,
A.
Kremenović
,
S.
Aškrabić
,
V.
Berec
,
Z.
Dohčević-Mitrović
, and
Z. V.
Popović
,
J. Sol-Gel Sci. Technol.
49
,
311
(
2009
).
21.
A. B.
Murphy
,
Sol. Energy Mater. Sol. Cells
91
,
1326
(
2007
).
22.
D.
Li
,
H.
Haneda
,
N. K.
Labhsetwar
,
S.
Hishita
, and
N.
Ohashi
,
Chem. Phys. Lett.
401
,
579
(
2005
).
23.
N.
Serpone
,
D.
Lawless
, and
R.
Khairutdinov
,
J. Phys. Chem.
99
,
16646
(
1995
).
24.
R.
Sarma
,
Q.
Das
,
A.
Hussain
,
A.
Ramteke
,
A.
Choudhury
, and
D.
Mohanta
,
Nanotechnology
25
,
275101
(
2014
);
[PubMed]
R.
Sarma
,
Q.
Das
,
A.
Hussain
,
A.
Ramteke
,
A.
Choudhury
, and
D.
Mohanta
,
Nanotechnology
25
,
359601
(
2014
).
25.
Z.
Deng
,
F. L.
Lie
,
S.
Shen
,
I.
Ghosh
,
M.
Mansuripur
, and
A. J.
Muscat
,
Langmuir
25
,
434
(
2009
).
26.
H. N.
Ghosh
and
S.
Adhikari
,
Langmuir
17
,
4129
(
2001
).
27.
N.
Dutta
,
D.
Mohanta
, and
A.
Choudhury
,
J. Appl. Phys.
109
,
094904
(
2011
).
28.
M. M.
Khan
,
S. A.
Ansari
,
M. I.
Amal
,
J.
Lee
, and
M. H.
Cho
,
Nanoscale
5
,
4427
(
2013
).
29.
S.
Bingham
and
W. A.
Daoud
,
J. Mater. Chem.
21
,
2041
(
2011
).
30.
K. M.
Parida
and
N.
Sahu
,
J. Mol. Catal. A
287
,
151
(
2008
).
31.
T.
Peng
,
D.
Zhao
,
H.
Song
, and
C.
Yan
,
J. Mol. Catal. A
238
,
119
(
2005
).
32.
L. G.
Devi
,
N.
Kottam
,
B. N.
Murthy
, and
S. G.
Kumar
,
J. Mol. Catal. A
328
,
44
(
2010
).
33.
U. I.
Gaya
and
A. H.
Abdullah
,
J. Photochem. Photobiol. C
9
,
1
(
2008
).
34.
A. E.
Regazzoni
,
P.
Mandelbaum
,
M.
Matsuyoshi
,
S.
Schiller
,
S. A.
Bilmes
, and
M. A.
Blesa
,
Langmuir
14
,
868
(
1998
).
35.
C. C.
Lin
and
H. S.
Liu
,
Ind. Eng. Chem. Res.
39
,
161
(
2000
).
36.
M. R.
Hoffmann
,
S. T.
Martin
,
W.
Choi
, and
D. W.
Bahnemann
,
Chem. Rev.
95
(
1
),
69
(
1995
).
37.
38.
J. G.
Yu
,
H. G.
Yu
,
B.
Chen
,
X. J.
Zhao
,
J. C.
Yu
, and
W. K.
Ho
,
J. Phys. Chem. B
107
,
13871
(
2003
).
You do not currently have access to this content.