Optimization analysis of thermoelectric generators operation is of importance both for practical applications and theoretical considerations. Depending on the desired goal, two different strategies are possible to achieve high performance: through optimization one may seek either power output maximization or conversion efficiency maximization. Recent literature reveals the persistent flawed notion that these two optimal working conditions may be achieved simultaneously. In this article, we lift all source of confusion by correctly posing the problem and solving it. We assume and discuss two possibilities for the environment of the generator to govern its operation: constant incoming heat flux, and constant temperature difference between the heat reservoirs. We demonstrate that, while power and efficiency are maximized simultaneously if the first assumption is considered, this is not possible with the second assumption. This latter corresponds to the seminal analyses of Ioffe who put forth and stressed the importance of the thermoelectric figure of merit ZT. We also provide a simple procedure to determine the different optimal design parameters of a thermoelectric generator connected to heat reservoirs through thermal contacts with a finite and fixed thermal conductance.

1.
C. B.
Vining
, “
An inconvenient truth about thermoelectrics
,”
Nat. Mater.
8
,
83
85
(
2009
).
2.
G. J.
Snyder
and
E. S.
Toberer
, “
Complex thermoelectric materials
,”
Nat. Mater.
7
,
105
114
(
2008
).
3.
J. P.
Heremans
,
M. S.
Dresselhaus
,
L. E.
Bell
, and
D. T.
Morelli
, “
When thermoelectrics reached the nanoscale
,”
Nat. Nanotechnol.
8
,
471
(
2013
).
4.
A. F.
Ioffe
,
Semiconductor Thermoelements and Thermoelectric Cooling
(
Infosearch, Ltd.
,
London
,
1957
).
5.
M. D.
Rowe
,
CRC Handbook of Thermoelectrics
(
CRC Press, Taylor & Francis Group
,
Boca Raton, FL, USA
,
2006
).
6.
L. L.
Baranowski
,
G. J.
Snyder
, and
E. S.
Toberer
, “
Effective thermal conductivity in thermoelectric materials
,”
J. Appl. Phys.
113
,
204904
(
2013
).
7.
L. L.
Baranowski
,
G. J.
Snyder
, and
E. S.
Toberer
, “
Response to ‘Comment on “Effective thermal conductivity in thermoelectric materials”’
,”
J. Appl. Phys.
115
,
126102
(
2014
).
8.
Y.
Apertet
,
H.
Ouerdane
,
C.
Goupil
, and
P.
Lecoeur
, “
Internal convection in thermoelectric generator models
,”
J. Phys.: Conf. Ser.
395
,
012103
(
2012
).
9.
Y.
Apertet
,
H.
Ouerdane
,
O.
Glavatskaya
,
C.
Goupil
, and
P.
Lecoeur
, “
Optimal working conditions for thermoelectric generators with realistic thermal coupling
,”
EPL
97
,
28001
(
2012
).
10.
G. J.
Snyder
,
Thermoelectric Power Generation: Efficiency and Compatibility
(
CRC Press, Taylor & Francis Group
,
Boca Raton, FL, USA
,
2006
), Chap. 9.
11.
V.
Raag
,
Optimization of Thermoelectric Generators for Fixed Temperature and Fixed Heat Input Operation
(
Calif. Inst. of Tech.
,
Pasadena, CA, USA
,
1969
).
12.
A.
Okhotin
,
A.
Efremov
,
V.
Okhotin
, and
A.
Pushkarskii
,
Thermoelectric Generators
(
Ft. Belvoir Defense Technical Information Center
,
Charlottesville, VA, USA
,
1972
).
13.
M.
Freunek
,
M.
Muller
,
T.
Ungan
,
W.
Walker
, and
L. M.
Reindl
, “
New physical model for thermoelectric generators
,”
J. Electron. Mater.
38
,
1214
1220
(
2009
).
14.
K.
Yazawa
and
A.
Shakouri
, “
Cost-efficiency trade-off and the design of thermoelectric power generators
,”
Environ. Sci. Technol.
45
,
7548
(
2011
).
15.
O.
Yamashita
,
S.
Tomiyoshi
, and
K.
Makita
, “
Bismuth telluride compounds with high thermoelectric figures of merit
,”
J. Appl. Phys.
93
,
368
(
2003
).
16.
Y.
Apertet
,
H.
Ouerdane
,
C.
Goupil
, and
P.
Lecoeur
, “
Comment on ‘Effective thermal conductivity in thermoelectric materials’
,”
J. Appl. Phys.
115
,
126101
(
2014
).
17.
K.
Yazawa
and
A.
Shakouri
, “
Optimization of power and efficiency of thermoelectric devices with asymmetric thermal contacts
,”
J. Appl. Phys.
111
,
024509
(
2012
).
18.
R.
McCarty
, “
Thermoelectric power generator design for maximum power: It's all about ZT
,”
J. Electron. Mater.
42
,
1504
(
2013
).
19.
M.
Gomez
,
R.
Reid
,
B.
Ohara
, and
H.
Lee
, “
Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting
,”
J. Appl. Phys.
113
,
174908
(
2013
).
20.
J. W.
Stevens
, “
Optimal design of small ΔT thermoelectric generation systems
,”
Energy Convers. Manage.
42
,
709
(
2001
).
21.
L.
Molan
, “
Thermoelectric-generator-based dc-dc conversion network for automotive applications
,” M.S. thesis (
The Royal Institute of Technology (KTH), Sweden
,
2011
).
You do not currently have access to this content.