The acoustic scattering characteristics of ∼10 μm-long microfibers of Parylene C embedded in water were investigated, towards the eventual goal of designing polymeric sculptured thin films for biomedical applications. The chosen microfibers were upright circular-cylindrical, slanted circular-cylindrical, chevronic, and helical in shape. A combination of numerical and analytical techniques was adopted to examine the scattering of plane waves in a spectral regime spanning the lower few eigenfrequencies of the microfibers. Certain maximums in the spectrums of the forward and back scattering efficiencies arise from the phenomenon of creeping waves. The same phenomenon affects the total scattering efficiency in some instances. The spectrums of all efficiencies exhibit the geometric symmetry of a microfiber in relation to the direction of propagation of the incident plane wave. Similarities in the shapes of the slanted circular-cylindrical and the chevronic microfibers are reflected in the spectrums of their scattering efficiencies. A highly compliant microfiber has shorter and broader peaks than a less compliant microfiber in the spectrums of the total scattering efficiency. The proper design of polymeric sculptured thin films will benefit from the knowledge gained of the directions of maximum scattering from individual microfibers.

1.
A.
Lakhtakia
,
J. Acoust. Soc. Am.
95
,
597
(
1994
).
2.
A.
Lakhtakia
,
J. Compos. Mater.
36
,
1277
(
2002
).
3.
Y.
Weitsman
,
J. Appl. Mech.
34
,
160
(
1967
).
4.
L.
Holland
,
Vapor Deposition of Thin Films
(
Wiley
,
1956
).
5.
D. M.
Mattox
,
The Foundations of Vacuum Coating Technology
(
Noyes Publications
,
2003
).
6.
R.
Messier
,
J. Nanophotonics
2
,
021995
(
2008
).
7.
A.
Lakhtakia
and
R.
Messier
,
Sculptured Thin Films: Nanoengineered Morphology and Optics
(
SPIE Press
,
2005
).
8.
D. P.
Pulsifer
,
R. J.
Martén-Palma
,
S. E.
Swiontek
,
C. G.
Pantano
, and
A.
Lakhtakia
,
Opt. Mater. Express
1
,
1332
(
2011
).
9.
A.
Lakhtakia
,
K.
Robbie
, and
M. J.
Brett
,
J. Acoust. Soc. Am.
101
,
2052
(
1997
).
10.
W. F.
Gorham
,
J. Polym. Sci., Part A-1: Polym. Chem.
4
,
3027
(
1966
).
11.
S.
Pursel
,
M. W.
Horn
,
M. C.
Demirel
, and
A.
Lakhtakia
,
Polymer
46
,
9544
(
2005
).
12.
M. C.
Demirel
,
E.
So
,
T. M.
Ritty
,
S. H.
Naidu
, and
A.
Lakhtakia
,
J. Biomed. Mater. Res., Part B
81
,
219
(
2007
).
13.
See http://scscoatings.com/docs/brochures/parylene-dimers.pdf for the measured constitutive properties of bulk Parylene C (last accessed March 05,
2014
).
14.
T.
Mori
and
K.
Tanaka
,
Acta Metall.
21
,
571
(
1973
).
15.
G. P.
Tandon
and
G. J.
Weng
,
Polym. Compos.
5
,
327
(
1984
).
16.
S. G.
Advani
and
R.
Talreja
,
Mech. Compos. Mater.
29
,
127
(
1993
).
17.
F. J.
Sabina
,
V. P.
Smyshlyaev
, and
J. R.
Willis
,
J. Mech. Phys. Solids
41
,
1573
(
1993
).
18.
T. G.
Mackay
,
J. Nanophotonics
5
,
051001
(
2011
).
19.
D.
Liang
,
D.
Schmidt
,
H.
Wang
,
E.
Schubert
, and
M.
Schubert
,
Appl. Phys. Lett.
103
,
111906
(
2013
).
20.
S. I.
Maslovski
and
M. G.
Silveirinha
,
Phys. Rev. B
80
,
245101
(
2009
).
21.
22.
F.-L.
Hsiao
,
A.
Khelif
,
H.
Moubchir
,
A.
Choujaa
,
C.-C.
Chen
, and
V.
Laude
,
J. Appl. Phys.
101
,
044903
(
2007
).
23.
I. E.
Psarobas
,
N.
Stefanou
, and
A.
Modinos
,
Phys. Rev. B
62
,
278
(
2000
).
24.
V. C.
Venugopal
,
J. Nanophotonics
7
,
073502
(
2013
).
25.
L.
Wei
and
A.
Lakhtakia
,
Mater. Res. Innovations
17
,
129
(
2013
).
26.
L.
Wei
,
E. A.
Vogler
,
T. M.
Ritty
, and
A.
Lakhtakia
,
Mater. Sci. Eng., C
31
,
1861
(
2011
).
27.
L.
Wei
,
L.
Leo
,
T. M.
Ritty
, and
A.
Lakhtakia
,
Mater. Res. Innovations
16
,
84
(
2012
).
28.
D. L.
Sengupta
, in
Electromagnetic and Acoustic Scattering by Simple Shapes
, edited by
J. J.
Bowman
,
T. B. A.
Senior
, and
P. L. E.
Uslenghi
(
Taylor & Francis
,
1988
), Chap. 10.
29.
H.
Überall
,
P. P.
Delsanto
,
J. D.
Alemar
,
E.
Rosario
, and
A.
Nagl
,
Appl. Mech. Rev.
43
,
235
(
1990
).
30.
V. V.
Varadan
,
Y.
Ma
,
V. K.
Varadan
, and
A.
Lakhtakia
, in
Field Representations and Introduction to Scattering
, edited by
V. V.
Varadan
,
A.
Lakhtakia
, and
V. K.
Varadan
(
North-Holland
,
Elsevier
,
1991
), Chap. 5.
31.
R. H.
Hackman
,
Phys. Acoust.
XXII
,
1
(
1992
).
32.
N. D.
Veksler
,
Resonance Acoustic Spectroscopy
(
Springer
,
1993
).
33.
F. P.
Mechel
,
Formulas of Acoustics
(
Springer
,
2002
), Vol.
2
.
34.
See http://rcc.its.psu.edu/resources/software/comsol as a resource for COMSOL software (last accessed March 05,
2014
).
35.
R. B.
Hetnarski
and
J.
Ignaczak
,
The Mathematical Theory of Elasticity
, 2nd ed. (
CRC Press
,
2011
).
36.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
, 4th ed. (
Wiley
,
2000
).
37.
S.
Ström
, in
Field Representations and Introduction to Scattering
, edited by
V. V.
Varadan
,
A.
Lakhtakia
, and
V. K.
Varadan
(
North-Holland
,
Elsevier
,
1991
), Chap. 2.
38.
A. D.
Pierce
,
Acoustics: An Introduction to its Physical Principles and Applications
(
Acoustical Society of America
,
1994
).
39.
F. D.
Hastings
,
J. B.
Schneider
, and
S. L.
Broschat
,
J. Acoust. Soc. Am.
100
,
3061
(
1996
).
40.
F.
Ihlenburg
,
Finite Element Analysis of Acoustic Scattering
(
Springer
,
1998
), Chap. 5.
41.
D. B.
Davidson
,
Computational Electromagnetics for RF and Microwave Engineering
(
Cambridge University Press
,
2005
), Sec. 6.3.1.
42.
S.
Jin
and
D.
Yin
,
J. Comput. Phys.
227
,
6106
(
2008
).
43.
J. A.
Polo
, Jr.
,
T. G.
Mackay
, and
A.
Lakhtakia
,
J. Opt. Soc. Am. B
28
,
2656
(
2011
).
44.
H.
Ammari
,
H.
Kang
,
S.
Soussi
, and
H.
Zribi
,
Multiscale Model. Simul.
5
,
646
(
2006
).
45.
H.
Ammari
,
H.
Kang
, and
H.
Lee
,
Arch. Ration Mech. Anal.
193
,
679
(
2009
).
You do not currently have access to this content.