Recent first-principles calculations have predicted Mn2NiX (X = Al, Ga, In, Sn) alloys to be magnetic shape memory alloys. Moreover, experiments on Mn2NiGa and Mn2NiSn suggest that the alloys deviate from the perfect inverse Heusler arrangement and that there is chemical disorder at the sublattices with tetrahedral symmetry. In this work, we investigate the effects of such chemical disorder on phase stabilities and magnetic properties using first-principles electronic structure methods. We find that except Mn2NiAl, all other alloys show signatures of martensitic transformations in presence of anti-site disorder at the sublattices with tetrahedral symmetry. This improves the possibilities of realizing martensitic transformations at relatively low fields and the possibilities of obtaining significantly large inverse magneto-caloric effects, in comparison to perfect inverse Heusler arrangement of atoms. We analyze the origin of such improvements in functional properties by investigating electronic structures and magnetic exchange interactions.

1.
F. X.
Hu
,
B. G.
Shen
, and
J. R.
Sun
,
Appl. Phys. Lett.
76
,
3460
(
2000
).
2.
L.
Pareti
,
M.
Solzi
,
F.
Albertini
, and
A.
Paoluzi
,
Eur. Phys. J. B
32
,
303
(
2003
).
3.
T.
Krenke
,
E.
Duman
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
, and
A.
Planes
,
Nat. Mater.
4
,
450
(
2005
).
4.
A.
Planes
,
L.
Mañosa
, and
M.
Acet
,
J. Phys.: Condens. Matter
21
,
233201
(
2009
).
5.
L.
Mañosa
,
D.
González-Alonso
,
A.
Planes
,
E.
Bonnot
,
M.
Barrio
,
J.
Tamarit
,
S.
Aksoy
, and
M.
Acet
,
Nat. Mater.
9
,
478
(
2010
).
6.
P. O.
Castillo-Villa
,
D. E.
Soto-Parra
,
J. A.
Matutes-Aquino
,
R. A
Ochoa-Gamboa
,
A.
Planes
,
L.
Mañosa
,
D.
González-Alonso
,
M.
Stipcich
,
R.
Romero
,
D.
Rios-Jara
, and
H.
Flores-Zuñiga
,
Phys. Rev. B
83
,
174109
(
2011
).
7.
C.
Biswas
,
R.
Rawat
, and
S. R.
Barmana
,
Appl. Phys. Lett.
86
,
202508
(
2005
).
8.
V. K.
Sharma
,
M. K.
Chattopadhyat
,
K. H. B.
Shaeb
,
A.
Chouhan
, and
S. B.
Roy
,
Appl. Phys. Lett.
89
,
222509
(
2006
).
9.
Z.
Li
,
C.
Jing
,
J.
Chen
,
S.
Yuan
,
S.
Cao
, and
J.
Zhang
,
Appl. Phys. Lett.
91
,
112505
(
2007
).
10.
V. K.
Sharma
,
M. K.
Chattopadhyay
, and
S. B.
Roy
,
Phys. Rev. B
76
,
140401
R (
2007
).
11.
D. Y.
Cong
,
S.
Roth
,
J.
Liu
,
Q.
Luo
,
M.
Potschke
,
C.
Hurrich
, and
L.
Schultz
,
Appl. Phys. Lett.
96
,
112504
(
2010
).
12.
Y.
Wang
,
C.
Huang
,
H.
Wu
,
J.
Gao
,
S.
Yang
,
D.
Wang
,
X.
Ding
,
X.
Song
, and
X.
Ren
,
Appl. Phys. Lett.
102
,
141909
(
2013
).
13.
L.
Ma
,
W. H.
Wang
,
C. M.
Zhen
,
D. L.
Hou
,
X. D.
Tang
,
E. K.
Liu
, and
G. H.
Wu
,
Phys. Rev. B
84
,
224404
(
2011
).
14.
H.
Luo
,
F.
Meng
,
Z.
Feng
,
Y.
Li
,
W.
Zhu
,
G.
Wu
,
X.
Zhu
,
C.
Jiang
, and
H.
Xu
,
J. Appl. Phys.
107
,
013905
(
2010
).
15.
K.
Ullakko
,
J. K.
Huang
,
C.
Kanter
,
R. C.
O'Handley
, and
V. V.
Kokorin
,
Appl. Phys. Lett.
69
,
1966
(
1996
).
16.
A.
Sozinov
,
A. A.
Likhachev
,
N.
Lanska
, and
K.
Ullakko
,
Appl. Phys. Lett.
80
,
1746
(
2002
).
17.
P.
Entel
,
A.
Banneberg
,
M.
Siewert
,
H. C.
Harper
,
M. E.
Gruner
,
D.
Comtesse
,
H.
Elmers
, and
M.
Kallmayer
,
Metall. Mater. Trans. A
43
,
2891
(
2012
).
18.
P.
Entel
,
M.
Siewert
,
M. E.
Gruner
,
A.
Chakrabarti
,
S. R.
Barman
,
V. V.
Sokolovskiy
, and
V. D.
Buchelnikov
,
J. Alloys Compd.
577
,
S107
(
2013
).
19.
R. B.
Helmholdt
and
K. H. J.
Buschow
,
J. Less-Common Met.
128
,
167
(
1987
).
20.
G. D.
Liu
,
J. L.
Chen
,
Z. H.
Liu
,
X. F.
Dai
,
G. H.
Wu
,
B.
Zhang
, and
X. X.
Zhang
,
Appl. Phys. Lett.
87
,
262504
(
2005
).
21.
N.
Lakshmi
,
K.
Pandey
, and
N.
Venugopalan
,
Bull. Mater. Sci.
25
,
309
(
2002
).
22.
S.
Paul
and
S.
Ghosh
,
J. Appl. Phys.
110
,
063523
(
2011
).
23.
P. J.
Brown
,
T.
Kanomata
,
K.
Neumann
,
K.-U.
Neumann
,
B.
Ouladdiaf
,
A.
Sheikh
, and
K. R. A.
Ziebeck
,
J. Phys.: Condens. Matter
22
,
506001
(
2010
).
24.
S.
Singh
,
R.
Rawat
,
S. E.
Muthu
,
S. W.
D'Souza
,
E.
Suard
,
A.
Senyshyn
,
S.
Banik
,
P.
Rajput
,
S.
Bhardwaj
,
A. M.
Awasthi
,
R.
Ranjan
,
S.
Arumugam
, and
D. L.
Schlagel
,
Phys. Rev. Lett.
109
,
246601
(
2012
).
25.
S. W.
D'Souza
,
A.
Chakrabarti
, and
S. R.
Barman
, e-print arXiv:1310.6130v1.
26.
S.
Paul
,
S.
Ghosh
, and
B.
Sanyal
,
J. Phys.: Condens. Matter
25
,
236005
(
2013
).
27.
H.
Ebert
,
D.
Ködderitzsch
, and
J.
Minar
,
Rep. Prog. Phys.
74
,
096501
(
2011
).
28.
See http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR for SPR-KKR is a high quality Density Functional Theory based electronic structure code, co-ordinated by H. Ebert.
29.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
30.
P.
Soven
,
Phys. Rev.
156
,
809
(
1967
).
31.
I.
Liechtenstein
,
M. I.
Katsnelson
,
V. A.
Antropov
, and
V. P.
Gubanov
,
J. Magn. Magn. Mater.
67
,
65
(
1987
).
32.
M.
Methfessel
and
J.
KØubler
,
J. Phys. F: Met. Phys.
12
,
141
(
1982
).
33.
G.
Grimvall
,
Phys. Scr.
13
,
59
(
1976
).
34.
P.
Söderlind
and
B.
Johansson
,
Thermochim. Acta
218
,
145
(
1993
).
35.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
36.
G.
Kresse
and
D.
Joubart
,
Phys. Rev. B
59
,
1758
(
1999
).
37.
A.
Zunger
,
S.-H.
Wei
,
L.
Ferreira
, and
J. E.
Bernard
,
Phys. Rev. Lett.
65
,
353
(
1990
).
38.
A.
Van de Walle
,
P.
Tiwary
,
M. de
Jong
,
D. L.
Olmsted
,
M.
Asta
,
A.
Dick
,
D.
Shin
,
Y.
Wang
,
L.-Q.
Chen
, and
Z.-K.
Liu
,
CALPHAD: Comput. Coupling Phase Diagrams Thermochem.
42
,
13
(
2013
).
39.
V. V.
Godlevsky
and
K. M.
Rabe
,
Phys. Rev. B
63
,
134407
(
2001
).
You do not currently have access to this content.