Adsorption, chemisorption, and reconstruction at the surfaces of ferroelectric materials can all contribute toward the pinning of ferroelectric polarization, which is called the electrical imprint effect. Here, we show that the opposite is also true: freshly cleaved, atomically flat surfaces of (001) oriented BaTiO3 exhibit a persistent change in surface chemistry that is driven by ferroelectric polarization. This surface modification is explored using lateral force microscopy (LFM), while the ferroelectric polarization is probed using piezoresponse force microscopy. We find that immediately after cleaving BaTiO3, LFM reveals friction contrast between ferroelectric domains. We also find that this surface modification remains after the ferroelectric domain distribution is modified, resulting in an imprint of the original ferroelectric domain distribution on the sample surface. This friction imprint effect has implications for surface patterning as well as ferroelectric device operation and failure.

1.
M. K.
Lee
,
T. K.
Nath
,
C. B.
Eom
,
M. C.
Smoak
, and
F.
Tsui
, “
Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate
,”
Appl. Phys. Lett.
77
,
3547
(
2000
).
2.
C. A. F.
Vaz
,
J.
Hoffman
,
A.-B.
Posadas
, and
C. H.
Ahn
, “
Magnetic anisotropy modulation of magnetite in Fe3O4/BaTiO3 (100) epitaxial structures
,”
Appl. Phys. Lett.
94
,
022504
(
2009
).
3.
D. C.
Sinclair
and
A. R.
West
, “
Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance
,”
J. Appl. Phys.
66
,
3850
(
1989
).
4.
J. O.
White
,
M.
Cronin-Golomb
,
B.
Fischer
, and
A.
Yariv
, “
Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3
,”
Appl. Phys. Lett.
40
,
450
(
1982
).
5.
T.
Karaki
,
K.
Yan
,
T.
Miyamoto
, and
M.
Adachi
, “
Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder
,”
Jpn. J. Appl. Phys., Part 2
46
,
L97
(
2007
).
6.
J.
Scott
,
Ferroelectric Memories
(
Springer
,
Berlin
,
2000
).
7.
H.
Zheng
,
J.
Wang
,
S. E.
Lofland
,
Z.
Ma
,
L.
Mohaddes-Ardabili
,
T.
Zhao
,
L.
Salamanca-Riba
,
S. R.
Shinde
,
S. B.
Ogale
,
F.
Bai
,
D.
Viehland
,
Y.
Jia
,
D. G.
Schlom
,
M.
Wuttig
,
A.
Roytburd
, and
R.
Ramesh
, “
Multiferroic BaTiO3-CoFe2O4 nanostructures
,”
Science
303
,
661
(
2004
).
8.
F.
Jona
and
G.
Shirane
,
Ferroelectric Crystals
(
Dover Publications, INC.
,
New York
,
1993
).
9.
See supplemental material at http://dx.doi.org/10.1063/1.4896531 for the crystal structure of BTO, images showing patterning of ferroelectric domains, images showing friction contrast within a single atomic terrace, and a table of friction values within each domain type for the images shown in Figs. 2–4.
10.

MTI Corporation, Part #: BTOb050510S2 (BaTiO3 single crystal, (001) orientation, 5 × 5 × 1 mm, polished on both sides).

11.
A.
Berlich
,
H.
Strauss
,
C.
Langheinrich
,
A.
Chassé
, and
H.
Morgner
, “
Surface termination of BaTiO3 (001) single crystals, a combined electron spectroscopic and theoretical study
,”
Surf. Sci.
605
,
158
(
2011
).
12.
G.
Arlt
and
P.
Sasko
, “
Domain configuration and equilibrium size of domains in BaTiO3 ceramics
,”
J. Appl. Phys.
51
,
4956
(
1980
).
13.
A. M.
Kolpak
,
D.
Li
,
R.
Shao
,
A. M.
Rappe
, and
D. A.
Bonnell
, “
Evolution of the structure and thermodynamic stability of the BaTiO3 (001) surface
,”
Phys. Rev. Lett.
101
,
036102
(
2008
).
14.

The full description of the procedures used in this article requires the identification of certain commercial products and their suppliers. The inclusion of such information should in no way be construed as indicating that such products or suppliers are endorsed by NIST or are recommended by NIST or that they are necessarily the best materials, instruments, software, or suppliers for the purposes described.

15.
R. W.
Carpick
,
D. F.
Ogletree
, and
M.
Salmeron
, “
Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy
,”
Appl. Phys. Lett.
70
,
1548
(
1997
).
16.
C. D.
Frisbie
,
L. F.
Rozsnyai
,
A.
Noy
,
M. S.
Wrighton
, and
C. M.
Lieber
, “
Functional group imaging by chemical force microscopy
,”
Science
265
,
2071
(
1994
).
17.
E.
Meyer
,
R.
Overney
,
D.
Brodbeck
,
L.
Howald
,
R.
Lüthi
,
J.
Frommer
, and
H.-J.
Güntherodt
, “
Friction and wear of Langmuir-Blodgett films observed by friction force microscopy
,”
Phys. Rev. Lett.
69
,
1777
(
1992
).
18.
H.
Bluhm
,
U. D.
Schwarz
, and
R.
Wiesendanger
, “
Origin of the ferroelectric domain contrast observed in lateral force microscopy
,”
Phys. Rev. B
57
,
161
(
1998
).
19.
Nanoscale Characterization of Ferroelectric Materials
, edited by
M.
Alexe
and
A.
Gruverman
(
Springer
,
Berlin
,
2004
).
20.
D. Y.
He
,
L. J.
Qiao
,
A. A.
Volinsky
,
Y.
Bai
,
M.
Wu
, and
W. Y.
Chu
, “
Humidity effects on (001) BaTiO3 single crystal surface water adsorption
,”
Appl. Phys. Lett.
98
,
062905
(
2011
).
21.
S. V.
Kalinin
,
C. Y.
Johnson
, and
D. A.
Bonnell
, “
Domain polarity and temperature induced potential inversion on the BaTiO3 (100) surface
,”
J. Appl. Phys.
91
,
3816
(
2002
).
22.
L.
Xu
and
M.
Salmeron
, “
Effects of surface ions on the friction and adhesion properties of mica
,”
Langmuir
14
,
2187
(
1998
).
23.
B. C.
Donose
,
I. U.
Vakarelski
,
E.
Taran
,
H.
Shinto
, and
K.
Higashitani
, “
Specific effects of divalent cation nitrates on the nanotribology of silica surfaces
,”
Ind. Eng. Chem. Res.
45
,
7035
(
2006
).
24.
I. U.
Vakarelski
,
N.
Teramoto
,
C. E.
McNamee
,
J. O.
Marston
, and
K.
Higashitani
, “
Ionic enhancement of silica surface nanowear in electrolyte solutions
,”
Langmuir
28
,
16072
(
2012
).
25.
D.
Li
,
M. H.
Zhao
,
J.
Garra
,
A. M.
Kolpak
,
A. M.
Rappe
,
D. A.
Bonnell
, and
J. M.
Vohs
, “
Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces
,”
Nature. Mater.
7
,
473
(
2008
).
26.
J. L.
Wang
,
B.
Vilquin
, and
N.
Barrett
, “
Screening of ferroelectric domains on BaTiO3 (001) surface by ultraviolet photo-induced charge and dissociative water adsorption
,”
Appl. Phys. Lett.
101
,
092902
(
2012
).
27.
A.
Neubrand
,
R.
Lindner
, and
P.
Hoffmann
, “
Room-temperature solubility behavior of barium titanate in aqueous media
,”
J. Am. Ceram. Soc.
83
,
860
(
2000
).
28.
L. M.
Eng
,
M.
Friedrich
,
J.
Fousek
, and
P.
Günter
, “
Deconvolution of topographic and ferroelectric contrast by noncontact and friction force microscopy
,”
J. Vac. Sci. Technol. B
14
,
1191
(
1996
).
29.
G.
Koster
,
B. L.
Kropman
,
G. J. H. M.
Rijnders
,
D. H. A.
Blank
, and
H.
Rogalla
, “
Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide
,”
Appl. Phys. Lett.
73
,
2920
(
1998
).
30.
J.
Fompeyrine
,
R.
Berger
,
H. P.
Lang
,
J.
Perret
,
E.
Mächler
,
Ch.
Gerber
, and
J.-P.
Locquet
, “
Local determination of the stacking sequence of layered materials
,”
Appl. Phys. Lett.
72
,
1697
(
1998
).
31.
Q.
Li
,
K.-S.
Kim
, and
A.
Rydberg
, “
Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system
,”
Rev. Sci. Instrum.
77
,
065105
(
2006
).
32.
B. J.
Rodriguez
,
C.
Callahan
,
S.
Kalinin
, and
R.
Proksch
, “
Dual-frequency resonance-tracking atomic force microscopy
,”
Nanotechnology
18
,
475504
(
2007
).
33.
D.
Necas
and
P.
Klapetek
, “
Gwyddion: An open-source software for SPM data analysis
,”
Central Eur. J. Phys.
10
,
181
(
2012
).

Supplementary Material

You do not currently have access to this content.