Ferroelectric domain switching within individual nanoscale grains of a 100 nm thick polycrystalline PbZr0.2Ti0.8O3 thin film has been shown to depend on the relative crystallographic orientation of the adjacent grains. Using Piezoresponse Force Microscopy, the significance of local microstructure on the domain switching was demonstrated. Different regions within grains show different coercive fields under the same external electric field. In addition, neighboring grains also show a collective switching pattern, facilitating/suppressing switching on both sides of the grain boundaries compared to the center of the grain. These experimental observations were supported by numerical simulation demonstrating that changing the crystallographic orientation of a grain affects the switching loop of the neighboring grains. Based on both experimental and numerical simulation, the conclusion can be made that microstructural modulation of the local electric and stress field can significantly affect individual grain switching in polycrystalline thin films.

1.
J. F.
Scott
,
Ferroelectric Memories
(
Springer Verlag
,
2000
).
2.
P.
Muralt
, “
Ferroelectric thin films for micro-sensors and actuators: A review
,”
J. Micromech. Microeng.
10
,
136
(
2000
).
3.
A. M.
Anton
,
R. E.
García
,
T. S.
Key
,
J. E.
Blendell
, and
K. J.
Bowman
, “
Domain switching mechanisms in polycrystalline ferroelectrics with asymmetric hysteretic behavior
,”
J. Appl. Phys.
105
,
24107
(
2009
).
4.
A.
Wu
,
P.
Vilarinho
,
D.
Wu
, and
A.
Gruverman
, “
Abnormal domain switching in Pb (Zr, Ti) O3 thin film capacitors
,”
Appl. Phys. Lett.
93
,
262906
(
2008
).
5.
M. C.
Ehmke
,
J.
Glaum
,
M.
Hoffman
,
J. E.
Blendell
, and
K. J.
Bowman
, “
In situ X-ray diffraction of biased ferroelastic switching in tetragonal Lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoelectrics
,”
J. Am. Ceram. Soc.
96
,
2913
(
2013
).
6.
Z. Z.
Zhao
,
K.
Bowman
, and
R. E.
García
, “
Modeling 180° domain switching population dynamics in polycrystalline ferroelectrics
,”
J. Am. Ceram. Soc.
95
,
1619
(
2012
).
7.
A.
Pramanick
,
D.
Damjanovic
,
J. E.
Daniels
,
J. C.
Nino
, and
J. L.
Jones
, “
Origins of electro‐mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading
,”
J. Am. Ceram. Soc.
94
,
293
(
2011
).
8.
S.
Choudhury
,
Y.
Li
,
C.
Krill
 III
, and
L.
Chen
, “
Effect of grain orientation and grain size on ferroelectric domain switching and evolution: Phase field simulations
,”
Acta Mater.
55
,
1415
(
2007
).
9.
B. J.
Rodriguez
,
Y.
Chu
,
R.
Ramesh
, and
S. V.
Kalinin
, “
Ferroelectric domain wall pinning at a bicrystal grain boundary in bismuth ferrite
,”
Appl. Phys. Lett.
93
,
142901
(
2008
).
10.
Y.
Jing
,
J. E.
Blendell
, and
K. J.
Bowman
, “
Three dimensional piezoresponse force microscopy polarization difference maps
,”
J. Appl. Phys.
109
,
074110
(
2011
).
11.
A.
Roelofs
,
U.
Böttger
,
R.
Waser
,
F.
Schlaphof
,
S.
Trogisch
, and
L. M.
Eng
, “
Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy
,”
Appl. Phys. Lett.
77
,
3444
(
2000
).
12.
S.
Wicks
,
V.
Anbusathiah
, and
V.
Nagarajan
, “
Nanoscale domain switching behaviour in polycrystalline ferroelectric thin films
,”
Nanotechnology
18
,
465502
(
2007
).
13.
R. E.
García
,
B. D.
Huey
, and
J. E.
Blendell
, “
Virtual piezoforce microscopy of polycrystalline ferroelectric films
,”
J. Appl. Phys.
100
,
64105
(
2006
).
14.
S.
Leach
,
R. E.
García
, and
V.
Nagarajan
, “
Edge and finite size effects in polycrystalline ferroelectrics
,”
Acta Mater.
59
,
191
(
2011
).
15.
S.
Kalinin
,
E.
Karapetian
, and
M.
Kachanov
, “
Nanoelectromechanics of piezoresponse force microscopy
,”
Phys. Rev. B.
70
,
184101
(
2004
).
16.
S. V.
Kalinin
,
S.
Jesse
,
B.
Rodriguez
,
Y.
Chu
,
R.
Ramesh
,
E.
Eliseev
, and
A.
Morozovska
, “
Probing the role of single defects on the thermodynamics of electric-field induced phase transitions
,”
Phys. Rev. Lett.
100
,
155703
(
2008
).
You do not currently have access to this content.