The carrier extraction property of a prototypical small molecule organic solar cell (OSC) composed of copper phthalocyanine (CuPc), C60, and bathocuproine (BCP) was studied on the basis of the internal potential distribution and carrier dynamics in the device. The internal potential distribution in the OSC structure at the interfaces and in the bulk region was determined by the Kelvin probe method. Significant potential gradients were found in the CuPc film on indium tin oxide and in the C60 film on CuPc, consistent with charge transfer through the contacts. Moreover, surface potential of the BCP layer grew linearly with increasing film thickness with a slope of ca. 35 mV/nm (giant surface potential: GSP), which indicated spontaneous orientation polarization in the film. The potential gradient and GSP significantly changed the built-in potential of the device. Current–voltage and modified time-of-flight measurements revealed that the BCP layer worked as an electron injection and extraction layer despite the wide energy gap. These results were discussed based on the contributions of GSP and the gap states in the BCP layer.

1.
P.
Peumans
,
A.
Yakimov
, and
S. R.
Forrest
,
J. Appl. Phys.
93
,
3693
(
2003
).
2.
A. W.
Hains
,
Z.
Liang
,
M. A.
Woodhouse
, and
B. A.
Gregg
,
Chem. Rev.
110
,
6689
(
2010
).
3.
M.
Jørgensen
,
K.
Norrman
,
S. A.
Gevorgyan
,
T.
Tromholt
,
B.
Andreasen
, and
F. C.
Krebs
,
Adv. Mater.
24
,
580
(
2012
).
4.
C. W.
Tang
,
Appl. Phys. Lett.
48
,
183
(
1986
).
5.
M.
Hiramoto
,
H.
Fukusumi
, and
M.
Yokoyama
,
Appl. Phys. Lett.
58
,
1062
(
1991
).
6.
J.
Xue
,
B. P.
Rand
,
S.
Uchida
, and
S. R.
Forrest
,
Adv. Mater.
17
,
66
(
2005
).
7.
G.
Yu
,
J.
Gao
,
J. C.
Hummelen
,
F.
Wudl
, and
A. J.
Heeger
,
Science
270
,
1789
(
1995
).
8.
J. J. M.
Halls
,
C. A.
Walsh
,
N. C.
Greenham
,
E. A.
Marseglla
,
R. H.
Friend
,
S. C.
Moratti
, and
A. B.
Holmes
,
Nature
376
,
498
(
1995
).
9.
J.
Xue
,
S.
Uchida
,
B. P.
Rand
, and
S. R.
Forrest
,
Appl. Phys. Lett.
85
,
5757
(
2004
).
10.
B.
Yu
,
F.
Zhu
,
H.
Wang
,
G.
Li
, and
D.
Yan
,
J. Appl. Phys.
104
,
114503
(
2008
).
11.
P.
Peumans
,
V.
Bulovic
, and
S. R.
Forrest
,
Appl. Phys. Lett.
76
,
2650
(
2000
).
12.
P.
Peumans
and
S. R.
Forrest
,
Appl. Phys. Lett.
79
,
126
(
2001
).
13.
Z. R.
Hong
,
Z. H.
Huang
, and
X. T.
Zeng
,
Chem. Phys. Lett.
425
,
62
(
2006
).
14.
M.
Vogel
,
S.
Doka
,
Ch.
Breyer
,
M. Ch
Lux-Steiner
, and
K.
Fostiropoulos
,
Appl. Phys. Lett.
89
,
163501
(
2006
).
15.
Z. R.
Hong
,
Z. H.
Huang
, and
X. T.
Zeng
,
Thin Solid Films
515
,
3019
(
2007
).
16.
Q. L.
Song
,
C. M.
Li
,
M. L.
Wang
,
X. Y.
Sun
, and
X. Y.
Hou
,
Appl. Phys. Lett.
90
,
071109
(
2007
).
17.
H.
Gommans
,
B.
Verreet
,
B. P.
Rand
,
R.
Muller
,
J.
Poortmans
,
P.
Heremans
, and
J.
Genoe
,
Adv. Funct. Mater.
18
,
3686
(
2008
).
18.
Y.
Nakayama
,
T. L.
Nguyen
,
Y.
Ozawa
,
S.
Machida
,
T.
Sato
,
H.
Tokairin
,
Y.
Noguchi
, and
H.
Ishii
,
Adv. Energy Mater.
4
,
1301354
(
2014
).
19.
E.
Ito
,
Y.
Washizu
,
N.
Hayashi
,
H.
Ishii
,
N.
Matsuie
,
K.
Tsuboi
,
Y.
Ouchi
,
Y.
Harima
,
K.
Yamashita
, and
K.
Seki
,
J. Appl. Phys.
92
,
7306
(
2002
).
20.
S.
Berleb
,
W.
Brütting
, and
G.
Paasch
,
Org. Electron.
1
,
41
(
2000
).
21.
Y.
Noguchi
,
N.
Sato
,
Y.
Tanaka
,
Y.
Nakayama
, and
H.
Ishii
,
Appl. Phys. Lett.
92
,
203306
(
2008
).
22.
Y.
Noguchi
,
Y.
Miyazaki
,
Y.
Tanaka
,
N.
Sato
,
Y.
Nakayama
,
T. D.
Schmidt
,
W.
Brütting
, and
H.
Ishii
,
J. Appl. Phys.
111
,
114508
(
2012
).
23.
M. M.
Rahman
,
N.
Ogawa
,
Y.
Miyazaki
,
Y.
Nakayama
,
Y.
Noguchi
, and
H.
Ishii
,
e-J. Surf. Sci. Nanotechnol.
10
,
315
(
2012
).
24.
K.
Yoshizaki
,
T.
Manaka
, and
M.
Iwamoto
,
J. Appl. Phys.
97
,
023703
(
2005
).
25.
K.
Ozasa
,
H.
Ito
,
M.
Maeda
, and
M.
Hara
,
Appl. Phys. Lett.
98
,
013301
(
2011
).
26.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater.
11
,
605
(
1999
).
27.
J. X.
Tang
,
Y. C.
Zhou
,
Z. T.
Liu
,
C. S.
Lee
, and
S. T.
Lee
,
Appl. Phys. Lett.
93
,
043512
(
2008
).
28.
N.
Li
,
B. E.
Lassiter
,
R. R.
Lunt
,
G.
Wei
, and
S. R.
Forrest
,
Appl. Phys. Lett.
94
,
023307
(
2009
).
29.
K.
Akaike
,
K.
Kanai
,
Y.
Ouchi
, and
K.
Seki
,
Adv. Funct. Mater.
20
,
715
(
2010
).
30.
K.
Akaike
and
Y.
Kubozono
,
Org. Electron.
14
,
1
(
2013
).
31.
S.
Zhong
,
J. Q.
Zhong
,
H. Y.
Mao
,
J. L.
Zhang
,
J. D.
Lin
, and
W.
Chen
,
Phys. Chem. Chem. Phys.
14
,
14127
(
2012
).
32.
K. W.
Hipps
and
J. J.
Hoagland
,
Langmuir
7
,
2180
(
1991
).
33.
H.
Yamane
,
Y.
Yabuuchi
,
H.
Fukagawa
,
S.
Kera
,
K. K.
Okudaira
, and
N.
Ueno
,
J. Appl. Phys.
99
,
093705
(
2006
).
34.
T.
Sueyoshi
,
H.
Kakuta
,
M.
Ono
,
K.
Sakamoto
,
S.
Kera
, and
N.
Ueno
,
Appl. Phys. Lett.
96
,
093303
(
2010
).
35.
S.
Wang
,
T.
Sakurai
,
R.
Kuroda
, and
K.
Akimoto
,
Appl. Phys. Lett.
100
,
243301
(
2012
).
36.
W.
Brütting
,
S.
Berleb
, and
A. G.
Mückl
,
Org. Electron.
2
,
1
(
2001
).
37.
K.
Schulze
,
C.
Uhrich
,
R.
Schuppel
,
K.
Leo
,
M.
Pfeiffer
,
E.
Brier
,
E.
Reinold
, and
P.
Bauerle
,
Adv. Mater.
18
,
2872
(
2006
).
38.
J.
Wagner
,
M.
Gruber
,
A.
Wilke
,
Y.
Tanaka
,
K.
Topczak
,
A.
Steindamm
,
U.
Hörmann
,
A.
Opitz
,
Y.
Nakayama
,
H.
Ishii
,
J.
Pflaum
,
N.
Koch
, and
W.
Brütting
,
J. Appl. Phys.
111
,
054509
(
2012
).
39.
Y.
Noguchi
,
Y.
Tanaka
,
Y.
Miyazaki
,
N.
Sato
,
Y.
Nakayama
, and
H.
Ishii
, in
Physics of Organic Semiconductors
, edited by
W.
Brütting
and
C.
Adachi
(
Wiley-VCH
,
2012
), Chap. 5.
40.
J.
Takahashi
and
H.
Tokairin
, personal communication (
2014
).
41.
Y.
Nakayama
,
S.
Machida
,
Y.
Miyazaki
,
T.
Nishi
,
Y.
Noguchi
, and
H.
Ishii
,
Org. Electron.
13
,
2850
(
2012
).
42.
Y.
Noguchi
,
H.
Lim
,
T.
Isoshima
,
E.
Ito
,
M.
Hara
,
W. W.
Chin
,
J. W.
Han
,
H.
Kinjo
,
Y.
Ozawa
,
Y.
Nakayama
, and
H.
Ishii
,
Appl. Phys. Lett.
102
,
203306
(
2013
).
43.
Q. L.
Song
,
F. Y.
Li
,
H.
Yang
,
H. R.
Wu
,
X. Z.
Wang
,
W.
Zhou
,
J. M.
Zhao
,
X. M.
Ding
,
C. H.
Huang
, and
X. Y.
Hou
,
Chem. Phys. Lett.
416
,
42
(
2005
).
44.
V.
Tripathi
,
D.
Datta
,
G. S.
Samal
,
A.
Awasthi
, and
S.
Kumar
,
J. Non-Cryst. Solids
354
,
2901
(
2008
).
You do not currently have access to this content.