Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundary conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr0.5Ti0.5)O3−FeGaB and BaTiO3−FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.

1.
R.
Ramesh
and
N.
Spaldin
,
Nature Mater.
6
,
21
(
2007
).
2.
J.
van Suchtelen
,
Philips Res. Rep.
27
,
28
(
1972
).
3.
J. M.
Rondinelli
,
M.
Stengel
, and
N. A.
Spaldin
,
Nat. Nanotechnol.
3
,
46
(
2008
).
4.
T.
Cai
,
S.
Ju
,
J.
Lee
,
N.
Sai
,
A. A.
Demkov
,
Q.
Niu
,
Z.
Li
,
J.
Shi
, and
E.
Wang
,
Phys. Rev. B
80
,
140415
(R) (
2009
).
5.
C.-G.
Duan
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
97
,
047201
(
2006
).
6.
G.
Srinivasan
,
Annu. Rev. Mater. Res.
40
,
153
(
2010
).
7.
M.
Vopsaroiu
,
J.
Blackburn
,
A.
Muniz-Piniella
, and
M. G.
Cain
,
J. Appl. Phys.
103
,
07F506
(
2008
).
8.
J.
Lou
,
M.
Liu
,
D.
Reed
,
Y.
Ren
, and
N. X.
Sun
,
Adv. Mater.
21
,
4711
(
2009
).
9.
N. A.
Pertsev
and
H.
Kohlstedt
,
Appl. Phys. Lett.
95
,
163503
(
2009
).
10.
N. A.
Pertsev
and
H.
Kohlstedt
,
Nanotechnology
21
,
475202
(
2010
).
11.
T.-D.
Onuta
,
Y.
Wang
,
C. J.
Long
, and
I.
Takeuchi
,
Appl. Phys. Lett.
99
,
203506
(
2011
).
12.
E.
Lage
,
C.
Kirchhof
,
V.
Hrkac
,
L.
Kienle
,
R.
Jahns
,
R.
Knöchel
,
E.
Quandt
, and
D.
Meyners
,
Nature Mater.
11
,
523
(
2012
).
13.
M. A.
Zurbuchen
,
T.
Wu
,
S.
Saha
,
J.
Mitchell
, and
S. K.
Streiffer
,
Appl. Phys. Lett.
87
,
232908
(
2005
).
14.
T.
Wu
,
M. A.
Zurbuchen
,
S.
Saha
,
R.-V.
Wang
,
S. K.
Streiffer
, and
J. F.
Mitchell
,
Phys. Rev. B
73
,
134416
(
2006
).
15.
S.-K.
Kim
,
J.-W.
Lee
,
S.-C.
Shin
,
H. W.
Song
,
C. H.
Lee
, and
K.
No
,
J. Magn. Magn. Mater.
267
,
127
(
2003
).
16.
W.
Eerenstein
,
M.
Wiora
,
J. L.
Prieto
,
J. F.
Scott
, and
N. V.
Mathur
,
Nature Mater.
6
,
348
(
2007
).
17.
C.
Thiele
,
K.
Dörr
,
O.
Bilani
,
J.
Rödel
, and
L.
Schultz
,
Phys. Rev. B
75
,
054408
(
2007
).
18.
N. A.
Pertsev
,
H.
Kohlstedt
, and
B.
Dkhil
,
Phys. Rev. B
80
,
054102
(
2009
).
19.
V. G.
Kukhar
,
N. A.
Pertsev
, and
A. L.
Kholkin
,
Nanotechnology
21
,
265701
(
2010
).
21.
J.
Mayer
,
L. A.
Giannuzzi
,
T.
Kamino
, and
J.
Michael
,
MRS Bull.
32
,
400
(
2007
).
22.
L. W.
Chang
,
M.
McMillen
,
F. D.
Morrison
,
J. F.
Scott
, and
J. M.
Gregg
,
Appl. Phys. Lett.
93
,
132904
(
2008
).
23.
S.
Ren
,
M.
Laver
, and
M.
Wuttig
,
Appl. Phys. Lett.
95
,
153504
(
2009
).
24.
S.
Prokhorenko
and
N. A.
Pertsev
,
J. Appl. Phys.
110
,
074116
(
2011
).
25.
N. A.
Pertsev
,
A. G.
Zembilgotov
, and
A. K.
Tagantsev
,
Phys. Rev. Lett.
80
,
1988
(
1998
).
26.
N. A.
Pertsev
,
V. G.
Kukhar
,
H.
Kohlstedt
, and
R.
Waser
,
Phys. Rev. B
67
,
054107
(
2003
).
27.
A. G.
Zembilgotov
,
N. A.
Pertsev
,
U.
Böttger
, and
R.
Waser
,
Appl. Phys. Lett.
86
,
052903
(
2005
).
28.
W.
Cao
and
L. E.
Cross
,
Phys. Rev. B
44
,
5
(
1991
).
29.
J.
Junquera
and
Ph.
Ghosez
,
Nature (London)
422
,
506
(
2003
).
30.
I.
Kornev
,
H.
Fu
, and
L.
Bellaiche
,
J. Mater. Sci.
41
,
137
(
2006
).
31.
L. D.
Landau
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
,
Electrodynamics of Continuous Media
(
Oxford
,
Pergamon
,
1984
).
32.
E. A. N.
Love
,
A Treatise on the Mathematical Theory of Elasticity
(
Dover
,
New York
,
1944
).
33.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
McGraw-Hill
,
New York
,
1968
).
34.
Y. L.
Li
,
L. E.
Cross
, and
L. Q.
Chen
,
J. Appl. Phys.
98
,
064101
(
2005
).
35.
B.
Wang
and
C. H.
Woo
,
J. Appl. Phys.
103
,
124107
(
2008
).
36.
K. L.
Livesey
,
Phys. Rev. B
83
,
224420
(
2011
).
37.
M. J.
Haun
,
E.
Furman
,
S. J.
Jang
, and
L. E.
Cross
,
Ferroelectrics
99
,
13
(
1989
).
38.
A. E.
Clark
,
J. B.
Restorff
,
M.
Wun-Fogle
,
T. A.
Lograsso
, and
D. L.
Schlagel
,
IEEE Trans. Magn.
36
,
3238
(
2000
).
39.
J.
Lou
,
R. E.
Insignares
,
Z.
Cai
,
K. S.
Ziemer
,
M.
Liu
, and
N. X.
Sun
,
Appl. Phys. Lett.
91
,
182504
(
2007
).
40.
T. H. E.
Lahtinen
,
Y.
Shirahata
,
L.
Yao
,
K. J. A.
Franke
,
G.
Venkataiah
,
T.
Taniyama
, and
S.
van Dijken
,
Appl. Phys. Lett.
101
,
262405
(
2012
).
41.
J. S.
Speck
and
W.
Pompe
,
J. Appl. Phys.
76
,
466
(
1994
).
42.
H. M.
Schurter
,
Experimental Investigation of the Mechanical Properties and Auxetic Behavior of Iron-Gallium Alloys
(M.Sc. thesis,
University of Maryland
,
2009
).
43.
O.
Diéguez
,
S.
Tinte
,
A.
Antons
,
C.
Bungaro
,
J. B.
Neaton
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Phys. Rev. B
69
,
212101
(
2004
).
44.
F. A.
Urtiev
,
V. G.
Kukhar
, and
N. A.
Pertsev
,
Appl. Phys. Lett.
90
,
252910
(
2007
).
45.
J.
Ryu
,
S.
Priya
,
K.
Uchino
, and
H.-E.
Kim
,
J. Electroceram.
8
,
107
(
2002
).
46.
C.
Israel
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature Mater.
7
,
93
(
2008
).
47.
A.
Piorra
,
R.
Jahns
,
I.
Teliban
,
J. L.
Gugat
,
M.
Gerken
,
R.
Knöchel
, and
E.
Quandt
,
Appl. Phys. Lett.
103
,
032902
(
2013
).
48.
N. A.
Pertsev
and
H.
Kohlstedt
,
Phys. Rev. Lett.
98
,
257603
(
2007
).
49.
G.
Radaelli
,
D.
Petti
,
M.
Cantoni
,
C.
Rinaldi
, and
R.
Bertacco
,
J. Appl. Phys.
115
,
172604
(
2014
).
50.
M. I.
Bichurin
,
V. M.
Petrov
, and
G.
Srinivasan
,
J. Appl. Phys.
92
,
7681
(
2002
);
M. I.
Bichurin
,
V. M.
Petrov
, and
G.
Srinivasan
,
Phys. Rev. B
68
,
054402
(
2003
).
You do not currently have access to this content.