The energies and stresses associated with the decohesion of β-SiC in the presence of mobile Pd and Ag impurities are studied from first principles. Density functional theory calculations are parameterized with a generalized cohesive zone model and are analyzed within a thermodynamic framework that accounts for realistic boundary conditions in the presence of mobile impurities. We find that Pd impurities will embrittle SiC when Pd is in equilibrium with metallic Pd precipitates. Our thermodynamic analysis predicts that Pd embrittles SiC by substantially reducing the maximum stress of decohesion as a result of a phase transition between decohering planes involving an influx of Pd atoms. The methods presented in this work can be applied to study the thermodynamics of decohesion of SiC in other aggressive environments containing oxygen and water, for example, and yield environment dependent cohesive zone models for use in continuum approaches to study crack propagation and fracture.

1.
L.-Y.
Chen
,
G.
Hunter
,
P.
Neudeck
,
G.
Bansal
,
J.
Petit
, and
D.
Knight
,
J. Vac. Sci. Technol., A
15
,
1228
(
1997
).
2.
S.
Huang
,
S.
Zhang
,
T.
Belystchko
,
S. S.
Terdalkar
, and
T.
Zhu
,
J. Mech. Phys. Solids
57
,
840
(
2009
).
3.
H.
Nabielek
,
P.
Brown
, and
P.
Offermann
,
Nucl. Tech.
35
,
483
(
1977
).
4.
R.
Lauf
,
T.
Lindemer
, and
R.
Pearson
,
J. Nucl. Mater.
120
,
6
(
1984
).
5.
J. J.
Powers
and
B. D.
Wirth
,
J. Nucl. Mater.
405
,
74
(
2010
).
6.
G. M. de
Bellefon
and
B.
Wirth
,
J. Nucl. Mater.
413
,
122
(
2011
).
7.
G. L.
Harris
,
Properties of Silicon Carbide
(
INSPEC
,
1995
).
8.
H. J.
MacLean
, Ph.D. thesis,
Massachusetts Institute of Technology
,
2004
.
9.
M.
Rijnders
,
A.
Kodentsov
,
J.
van Beek
,
J. van den
Akker
, and
F.
van Loo
,
Solid State Ion.
95
,
51
(
1997
).
10.
T.
Gerczak
, Ph.D. thesis,
University of Wisconsin-Madison
,
2013
.
11.
H.
MacLean
,
R.
Ballinger
,
L.
Kolaya
,
S.
Simonson
,
N.
Lewis
, and
M.
Hanson
,
J. Nucl. Mater.
357
,
31
(
2006
).
12.
E.
Friedland
,
J. B.
Malherbe
,
N. G.
Van der Berg
,
T.
Hlatshwayo
,
A. J.
Botha
,
E.
Wendler
, and
W.
Wesch
,
J. Nucl. Mater.
389
,
326
(
2009
).
13.
E.
López-Honorato
,
D. X.
Yang
,
J.
Tan
,
P. J.
Meadows
, and
P.
Xiao
,
J. Am. Ceram. Soc.
93
,
3076
(
2010
).
14.
J.
Neethling
,
J.
O'Connell
, and
E.
Olivier
,
J. Nucl. Mater.
251
,
230
(
2012
).
15.
E.
Olivier
and
J.
Neethling
,
J. Nucl. Mater.
432
,
252
(
2013
).
16.
T.
Besmann
,
R.
Stoller
,
G.
Samolyuk
,
P.
Schuck
,
S.
Golubov
,
S.
Rudin
,
J.
Wills
,
J.
Coe
,
B.
Wirth
,
S.
Kim
,
D.
Morgan
, and
I.
Szlufarska
,
J. Nucl. Mater.
430
,
181
(
2012
).
17.
A. G.
Evans
,
F. W.
Zok
,
R. M.
McMeeking
, and
Z. Z.
Du
,
J. Am. Ceram. Soc.
79
,
2345
(
1996
).
18.
A.
Galeckas
,
J.
Linnros
, and
P.
Pirouz
,
Phys. Rev. Lett.
96
,
025502
(
2006
).
19.
Y.
Ohno
,
I.
Yonenaga
,
K.
Miyao
,
K.
Maeda
, and
H.
Tsuchida
,
Appl. Phys. Lett.
101
,
042102
(
2012
).
20.
S.
Serebrinsky
,
E.
Carter
, and
M.
Ortiz
,
J. Mech. Phys. Solids
52
,
2403
(
2004
).
21.
V. B.
Deyirmenjian
,
V.
Heine
,
M. C.
Payne
,
V.
Milman
,
R. M.
Lynden-Bell
, and
M. W.
Finnis
,
Phys. Rev. B
52
,
15191
(
1995
).
22.
M.
Kohyama
,
Philos. Mag. Lett.
79
,
659
(
1999
).
23.
M.
Kohyama
,
Phys. Rev. B
65
,
184107
(
2002
).
24.
G.-H.
Lu
,
S.
Deng
,
T.
Wang
,
M.
Kohyama
, and
R.
Yamamoto
,
Phys. Rev. B
69
,
134106
(
2004
).
25.
R.
Janisch
,
N.
Ahmed
, and
A.
Hartmaier
,
Phys. Rev. B
81
,
184108
(
2010
).
26.
G.-H.
Lu
,
Y.
Zhang
,
S.
Deng
,
T.
Wang
,
M.
Kohyama
,
R.
Yamamoto
,
F.
Liu
,
K.
Horikawa
, and
M.
Kanno
,
Phys. Rev. B
73
,
224115
(
2006
).
27.
N. I.
Medvedeva
,
R. A.
Howell
,
D. C.
Van Aken
, and
J. E.
Medvedeva
,
Phys. Rev. B
81
,
012105
(
2010
).
28.
S.
Zhang
,
O. Y.
Kontsevoi
,
A. J.
Freeman
, and
G. B.
Olson
,
Phys. Rev. B
85
,
214109
(
2012
).
29.
A.
Van der Ven
and
G.
Ceder
,
Phys. Rev. B
67
,
060101
(
2003
).
30.
A.
Van der Ven
and
G.
Ceder
,
Acta Mater.
52
,
1223
(
2004
).
31.
D. E.
Jiang
and
E. A.
Carter
,
Acta Mater.
52
,
4801
(
2004
).
32.
O.
Nguyen
and
M.
Ortiz
,
J. Mech. Phys. Solids
50
,
1727
(
2002
).
33.
R. L.
Hayes
,
M.
Ortiz
, and
E. A.
Carter
,
Phys. Rev. B
69
,
172104
(
2004
).
34.
P.
Lazar
and
R.
Podloucky
,
Phys. Rev. B
78
,
104114
(
2008
).
35.
N. J.
Mosey
and
E. A.
Carter
,
J. Mech. Phys. Solids
57
,
287
(
2009
).
36.
J. P.
Hirth
and
J. R.
Rice
,
Metall. Trans. A
11
,
1501
(
1980
).
37.
J. R.
Rice
and
J.-S.
Wang
,
Mater. Sci. Eng., A
107
,
23
(
1989
).
38.
G.
Roma
,
J. Appl. Phys.
106
,
123504
(
2009
).
39.
D.
Shrader
,
S.
Khalil
,
T.
Gerczak
,
T. R.
Allen
,
A. J.
Heim
,
I.
Szlufarska
, and
D.
Morgan
,
J. Nucl. Mater.
408
,
257
(
2011
).
40.
P. C.
Schuck
and
R. E.
Stoller
,
Phys. Rev. B
83
,
125303
(
2011
).
41.
H. Y.
Xiao
,
Y.
Zhang
,
L. L.
Snead
,
V.
Shutthanandan
, and
W. J.
Weber
,
J. Nucl. Mater.
420
,
123
(
2012
).
42.
J. C.
Thomas
,
N. A.
Modine
,
J. M.
Millunchick
, and
A.
Van der Ven
,
Phys. Rev. B
82
,
165434
(
2010
).
43.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
44.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
45.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
46.
R. A.
Enrique
and
A.
Van der Ven
, “Decohesion models of brittle fracture from atomistic simulations” (unpublished).
47.
J. H.
Rose
,
J.
Ferrante
, and
J. R.
Smith
,
Phys. Rev. Lett.
47
,
675
(
1981
).
48.
J. H.
Rose
,
J. R.
Smith
, and
J.
Ferrante
,
Phys. Rev. B
28
,
1835
(
1983
).
49.
L.
Pastewka
,
A.
Klemenz
,
P.
Gumbsch
, and
M.
Moseler
,
Phys. Rev. B
87
,
205410
(
2013
).
50.
E.
Torres
,
C.
Lorrette
,
P.
Weisbecker
,
C.
Sauder
,
C.
Cabet
,
B.
Riccetti
,
L.
Briottet
, and
F.
Rebillat
,
Oxid. Met.
80
,
267
(
2013
).
You do not currently have access to this content.