The interplay between plasmons and excitons in bulk metamaterials are investigated by performing spectroscopic studies, including variable angle pump-probe ellipsometry. Gain functionalized gold nanoparticles have been densely packed through a microfluidic chip, representing a scalable process towards bulk metamaterials based on self-assembly approach. Chromophores placed at the hearth of plasmonic subunits ensure exciton-plasmon coupling to convey excitation energy to the quasi-static electric field of the plasmon states. The overall complex polarizability of the system, probed by variable angle spectroscopic ellipsometry, shows a significant modification under optical excitation, as demonstrated by the behavior of the ellipsometric angles Ψ and Δ as a function of suitable excitation fields. The plasmon resonances observed in densely packed gain functionalized core-shell gold nanoparticles represent a promising step to enable a wide range of electromagnetic properties and fascinating applications of plasmonic bulk systems for advanced optical materials.

1.
2.
J. R.
Lakowicz
,
Anal. Biochem.
298
,
1
(
2001
).
3.
M.
Stockman
,
Nat. Photonics
2
,
327
(
2008
).
4.
K. E.
Dorfman
,
P. K.
Jha
,
D. V.
Voronine
,
P.
Genevet
,
F.
Capasso
, and
M. O.
Scully
,
Phys. Rev. Lett.
111
,
043601
(
2013
).
5.
D. J.
Bergman
and
M. I.
Stockman
,
Phys. Rev. Lett.
90
,
027402
(
2003
).
6.
N. G.
Khlebtsov
,
Quantum Electron.
38
,
504
(
2008
).
7.
G.
Strangi
,
A. De
Luca
,
S.
Ravaine
,
M.
Ferrie
, and
R.
Bartolino
,
Appl. Phys. Lett.
98
,
251912
(
2011
).
8.
A. De
Luca
,
M. P.
Grzelczak
,
I.
Pastoriza-Santos
,
L. M.
Liz-Marzán
,
M. L.
Deda
,
M.
Striccoli
, and
G.
Strangi
,
ACS Nano
5
,
5823
(
2011
).
9.
A. De
Luca
,
M.
Ferrie
,
S.
Ravaine
,
M. La
Deda
,
M.
Infusino
,
A. R.
Rashed
,
A.
Veltri
,
A.
Aradian
,
N.
Scaramuzza
, and
G.
Strangi
,
J. Mater. Chem.
22
,
8846
(
2012
).
10.
A.
Fang
,
T.
Koschny
,
M.
Wegener
, and
C. M.
Soukoulis
,
Phys. Rev. B
79
,
241104
(
2009
).
11.
N. M.
Lawandy
,
Appl. Phys. Lett.
85
,
5040
(
2004
).
12.
M. A.
Noginov
,
G.
Zhu
,
M.
Bahoura
,
J.
Adegoke
,
C. E.
Small
,
B. A.
Ritzo
,
V. P.
Drachev
, and
V. M.
Shalaev
,
Opt. Lett.
31
,
3022
(
2006
).
13.
A. De
Luca
,
R.
Dhama
,
A. R.
Rashed
,
C.
Coutant
,
S.
Ravaine
,
P.
Barois
,
M.
Infusino
, and
G.
Strangi
,
Appl. Phys. Lett.
104
,
103103
(
2014
).
14.
M.
Infusino
,
A. De
Luca
,
A.
Veltri
,
C.
Vzquez-Vzquez
,
M. A.
Correa-Duarte
,
R.
Dhama
, and
G.
Strangi
,
ACS Photonics
1
,
371
(
2014
).
15.
K. C.
Grabar
,
R. G.
Freeman
,
M. B.
Hommer
, and
M. J.
Natan
,
Anal. Chem.
67
,
735
(
1995
).
16.
C.
Graf
,
D. L. J.
Vossen
,
A.
Imhof
, and
A.
van Blaaderen
,
Langmuir
19
,
6693
(
2003
).
17.
J. C.
McDonald
and
G. M.
Whitesides
,
Acc. Chem. Res.
35
,
491
(
2002
).
18.
J.
Leng
,
B.
Lonetti
,
P.
Tabeling
,
M.
Joanicot
, and
A.
Ajdari
,
Phys. Rev. Lett.
96
,
084503
(
2006
).
19.
J.-B.
Salmon
and
J.
Leng
,
J. Appl. Phys.
107
,
084905
(
2010
).
20.
A.
Merlin
,
J.-B.
Salmon
, and
J.
Leng
,
Soft Matter
8
,
3526
(
2012
).
21.
R. M. A.
Azzam
and
N. M.
Bashara
,
Ellipsometry and Polarized Light
(
Elsevier Science Pub Co.
,
1987
).
22.
A. N.
Grigorenko
,
M.
Polini
, and
K. S.
Novoselov
,
Nat. Photonics
6
,
749
(
2012
).
23.
R.
Verre
,
K.
Fleischer
,
C.
Smith
,
N.
McAlinden
,
J. F.
McGilp
, and
I. V.
Shvets
,
Phys. Rev. B
84
,
085440
(
2011
).
24.
V. G.
Kravets
,
F.
Schedin
,
A. V.
Kabashin
, and
A. N.
Grigorenko
,
Opt. Lett.
35
,
956
(
2010
).
25.
D. W.
Brandl
,
N. A.
Mirin
, and
P.
Nordlander
,
J. Phys. Chem. B
110
,
12302
(
2006
).
26.
H.
Wang
,
D. W.
Brandl
,
P.
Nordlander
, and
N. J.
Halas
,
Acc. Chem. Res.
40
,
53
(
2007
).
You do not currently have access to this content.