The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.

1.
2.
G. S.
Nolas
,
J.
Sharp
, and
H. J.
Goldsmid
,
Thermoelectrics: Basic Principles and New Material Developments
(
Springer-Verlag
,
Berlin, Heidelberg
,
2001
).
4.
M.-S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R. G.
Yang
,
H.
Lee
,
D. Z.
Wang
,
Z. F.
Ren
,
J.-P.
Fleurial
, and
P.
Gogna
,
Adv. Mater.
19
,
1043
(
2007
).
5.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
(
2008
).
6.
E.
Krali
and
Z. A. K.
Durrani
,
Appl. Phys. Lett.
102
,
143102
(
2013
).
7.
T. C.
Harman
,
P. J.
Taylor
,
M. P.
Walsh
, and
B. E.
LaForge
,
Science
297
,
2229
(
2002
).
8.
K. K.
Likharev
,
Proc. IEEE
87
,
606
(
1999
).
9.
Z. A. K.
Durrani
,
Single-Electron Devices and Circuits in Silicon
(
Imperial College Press
,
London
,
2010
).
10.
L. P.
Kowenhoven
,
C. M.
Marcus
,
P. L.
McEuen
,
S.
Tarucha
,
R. M.
Westervelt
, and
N. S.
Wingreen
,
Mesoscopic Electron Transport
, Electron Transport in Quantum Dots, edited by
L. L.
Sohn
,
L. P.
Kowenhoven
, and
G.
Schön
(
Kluwer
,
Dordrecht
,
1997
).
11.
M.
Amman
,
E.
Ben-Jacob
, and
J.
Cohn
,
Z. Phys. B: Condens. Matter
85
,
405
(
1991
).
12.
C. W. J.
Beenakker
and
A. A. M.
Staring
,
Phys. Rev. B
46
,
9667
(
1992
).
13.
X.
Chen
,
H.
Buhmann
, and
L. W.
Molenkamp
,
Phys. Rev. B
61
,
16801
(
2000
).
14.
L. W.
Molenkamp
,
A. A. M.
Staring
,
B. W.
Alphenaar
,
H.
van Houten
, and
C. W.
Beenakker
,
Semicond. Sci. Technol.
9
,
903
(
1994
).
15.
A. S.
Dzurak
,
C. G.
Smith
,
M.
Pepper
,
D. A.
Ritchie
,
J. E. F.
Frost
,
G. A. C.
Jones
, and
D. G.
Hasko
,
Solid State Commun.
87
,
1145
(
1993
).
16.
R.
Scheibner
,
H.
Buhmann
,
D.
Reuter
,
M. N.
Kiselev
, and
L. W.
Molenkamp
,
Phys. Rev. Lett.
95
,
176602
(
2005
).
17.
L.
Weber
and
E.
Gmelin
,
Appl. Phys. A: Mater. Sci. Process.
53
,
136
(
1991
).
18.
P.
Lafarge
,
H.
Pothier
,
E. R.
Williams
,
D.
Esteve
,
C.
Urbina
, and
M. H.
Devoret
,
Z. Phys. B: Condens. Matter
85
,
327
(
1991
).
19.
M.
Amman
,
R.
Wilkins
,
E.
Ben-Jacob
,
P. D.
Maker
, and
R. C.
Jaklevic
,
Phys. Rev. B
43
,
1146
(
1991
).
20.
K.
Nakazato
,
R. J.
Blaikie
, and
H.
Ahmed
,
J. Appl. Phys.
75
,
5123
(
1994
).
21.
Z. A. K.
Durrani
,
A. C.
Irvine
, and
H.
Ahmed
,
IEEE Trans. Electron Devices
47
,
2334
(
2000
).
22.
Y.
Takahashi
,
Y.
Ono
,
A.
Fujiwara
, and
H.
Inokawa
,
J. Phys.: Condens. Matter
14
,
R995
(
2002
).
You do not currently have access to this content.