The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si1−xGex buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si1−xGex layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach.
Skip Nav Destination
Article navigation
7 March 2014
Research Article|
March 04 2014
Thin SiGe virtual substrates for Ge heterostructures integration on silicon
S. Cecchi;
S. Cecchi
a)
1
L-NESS, Dipartimento di Fisica, Politecnico di Milano–Polo Territoriale di Como
, Via Anzani 42, I-22100 Como, Italy
Search for other works by this author on:
E. Gatti;
E. Gatti
2
L-NESS, Dipartimento di Scienza dei Materiali, Università di Milano Bicocca
, via Cozzi 53, I-20126 Milano, Italy
Search for other works by this author on:
D. Chrastina;
D. Chrastina
1
L-NESS, Dipartimento di Fisica, Politecnico di Milano–Polo Territoriale di Como
, Via Anzani 42, I-22100 Como, Italy
Search for other works by this author on:
J. Frigerio;
J. Frigerio
1
L-NESS, Dipartimento di Fisica, Politecnico di Milano–Polo Territoriale di Como
, Via Anzani 42, I-22100 Como, Italy
Search for other works by this author on:
E. Müller Gubler;
E. Müller Gubler
3
Electron Microscopy ETH Zurich
, ETH Zurich
, Auguste-Piccard-Hof 1, CH-8093 Zurich, Switzerland
Search for other works by this author on:
D. J. Paul;
D. J. Paul
4
School of Engineering, University of Glasgow
, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
Search for other works by this author on:
M. Guzzi;
M. Guzzi
2
L-NESS, Dipartimento di Scienza dei Materiali, Università di Milano Bicocca
, via Cozzi 53, I-20126 Milano, Italy
Search for other works by this author on:
G. Isella
G. Isella
1
L-NESS, Dipartimento di Fisica, Politecnico di Milano–Polo Territoriale di Como
, Via Anzani 42, I-22100 Como, Italy
Search for other works by this author on:
a)
Electronic mail: [email protected]. Present address: Laboratorio MDM, CNR-IMM–Unità di Agrate Brianza, Via Olivetti 2, I-20041 Agrate Brianza, Italy.
J. Appl. Phys. 115, 093502 (2014)
Article history
Received:
November 28 2013
Accepted:
February 20 2014
Citation
S. Cecchi, E. Gatti, D. Chrastina, J. Frigerio, E. Müller Gubler, D. J. Paul, M. Guzzi, G. Isella; Thin SiGe virtual substrates for Ge heterostructures integration on silicon. J. Appl. Phys. 7 March 2014; 115 (9): 093502. https://doi.org/10.1063/1.4867368
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Piezoelectric thin films and their applications in MEMS: A review
Jinpeng Liu, Hua Tan, et al.
Tutorial: Simulating modern magnetic material systems in mumax3
Jonas J. Joos, Pedram Bassirian, et al.
Related Content
Ge/SiGe quantum wells on Si(111): Growth, structural, and optical properties
J. Appl. Phys. (July 2014)
Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells
J. Appl. Phys. (January 2012)
Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide
Appl. Phys. Lett. (October 2011)
Above-room-temperature photoluminescence from a strain-compensated Ge/Si0.15Ge0.85 multiple-quantum-well structure
Appl. Phys. Lett. (April 2012)
Thermal atomic layer etching of germanium-rich SiGe using an oxidation and “conversion-etch” mechanism
J. Vac. Sci. Technol. A (February 2021)