Based on the acoustic radiation of point source, the physical mechanism of phase-coded acoustical vortices is investigated with formulae derivations of acoustic pressure and vibration velocity. Various factors that affect the optimization of acoustical vortices are analyzed. Numerical simulations of the axial, radial, and circular pressure distributions are performed with different source numbers, frequencies, and axial distances. The results prove that the acoustic pressure of acoustical vortices is linearly proportional to the source number, and lower fluctuations of circular pressure distributions can be produced for more sources. With the increase of source frequency, the acoustic pressure of acoustical vortices increases accordingly with decreased vortex radius. Meanwhile, increased vortex radius with reduced acoustic pressure is also achieved for longer axial distance. With the 6-source experimental system, circular and radial pressure distributions at various frequencies and axial distances have been measured, which have good agreements with the results of numerical simulations. The favorable results of acoustic pressure distributions provide theoretical basis for further studies of acoustical vortices.

1.
M.
Berry
and
S.
Klein
,
J. Mod. Opt.
43
,
2139
(
1996
).
2.
N.
Simpson
,
K.
Dholakia
,
L.
Allen
, and
M.
Padgett
,
Opt. Lett.
22
,
52
(
1997
).
3.
M. V.
Berry
and
S.
Popescu
,
J. Phys. A: Math. Gen.
39
,
6965
(
2006
).
4.
J.
Courtial
and
K.
O'Holleran
,
Eur. Phys. J. Spectrosc. Top.
145
,
35
(
2007
).
5.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J. P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
,
Science
334
,
333
(
2011
).
6.
J. F.
Nye
and
M. V.
Berry
,
Proc. R. Soc. Lond. A
336
,
165
(
1974
).
7.
J. L.
Thomas
and
R.
Marchiano
,
Phys. Rev. Lett.
91
,
244302
(
2003
).
8.
K. Y.
Bliokh
and
V. D.
Freilikher
,
Phys. Rev. B
74
,
174302
(
2006
).
9.
10.
R.
Marchiano
,
F.
Coulouvrat
,
L.
Ganjehi
, and
J. L.
Thomas
,
Phys. Rev. E
77
,
016605
(
2008
).
11.
B. T.
Hefner
and
P. L.
Marston
,
J. Acoust. Soc. Am.
106
,
3313
(
1999
).
12.
L.
Allen
,
M.
Beijersbergen
,
R.
Spreeuw
, and
J.
Woerdman
,
Phys. Rev. A
45
,
8185
(
1992
).
13.
K. D.
Skeldon
,
C.
Wilson
,
M.
Edgar
, and
M. J.
Padgett
,
New J. Phys.
10
,
013018
(
2008
).
14.
S. T.
Kang
and
C. K.
Yeh
,
IEEE Trans. Ultrason. Ferr.
57
,
1451
(
2010
).
15.
T.
Brunet
,
J. L.
Thomas
, and
R.
Marchiano
,
Phys. Rev. Lett.
105
,
034301
(
2010
).
16.
K.
Volke-Sepúlveda
,
A. O.
Santillán
, and
R. R.
Boullosa
,
Phys. Rev. Lett.
100
,
024302
(
2008
).
17.
A. O.
Santillán
and
K.
Volke-Sepúlveda
,
Am. J. Phys.
77
,
209
(
2009
).
18.
L.
Zhang
and
P. L.
Marston
,
Phys. Rev. E
84
,
065601
(
2011
).
19.
P.
Marston
and
J.
Crichton
,
Phys. Rev. A
30
,
2508
(
1984
).
20.
H.
He
,
M. E.
Friese
,
N. R.
Heckenberg
, and
H.
Rubinsztein-Dunlop
,
Phys. Rev. Lett.
75
,
826
(
1995
).
21.
A.
Anhäuser
,
R.
Wunenburger
, and
E.
Brasselet
,
Phys. Rev. Lett.
109
,
034301
(
2012
).
22.
L.
Yang
,
Q.
Ma
,
J.
Tu
, and
D.
Zhang
,
J. Appl. Phys.
113
,
154904
(
2013
).
23.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
).
You do not currently have access to this content.