The word “nanoparticle” nominally elicits a vision of an isolated sphere; however, the vast bulk of nanoparticulate material exists in an aggregated state. This can have significant implications for applications such as combustion, catalysis, and optical excitation, where particles are exposed to high temperature and rapid heating conditions. In such environments, particles become susceptible to morphological changes which can reduce surface area, often to the detriment of functionality. Here, we report on thermally-induced coalescence which can occur in aluminum nanoparticle aggregates subjected to rapid heating (106–1011 K/s). Using dynamic transmission electron microscopy, we observed morphological changes in nanoparticle aggregates occurring in as little as a few nanoseconds after the onset of heating. The time-resolved probes reveal that the morphological changes initiate within 15 ns and are completed in less than 50 ns. The morphological changes were found to have a threshold temperature of about 1300 ± 50 K, as determined by millisecond-scale experiments with a calibrated heating stage. The temperature distribution of aggregates during laser heating was modeled with various simulation approaches. The results indicate that, under rapid heating conditions, coalescence occurs at an intermediate temperature between the melting points of aluminum and the aluminum oxide shell, and proceeds rapidly once this threshold temperature is reached.

1.
Y. J.
Min
,
M.
Akbulut
,
K.
Kristiansen
,
Y.
Golan
, and
J.
Israelachvili
,
Nat. Mater.
7
,
527
(
2008
).
2.
B. L.
Cushing
,
V. L.
Kolesnichenko
, and
C. J.
O'Connor
,
Chem. Rev.
104
,
3893
(
2004
).
3.
P. C.
Hiemenz
and
R.
Rajagopalan
,
Principles of Colloid and Surface Chemistry, Revised and Expanded
(
CRC Press
,
1997
).
4.
F. E.
Kruis
,
H.
Fissan
, and
A.
Peled
,
J. Aerosol Sci.
29
,
511
(
1998
).
5.
Y.
Chen
,
R. E.
Palmer
, and
J. P.
Wilcoxon
,
Langmuir
22
,
2851
(
2006
).
6.
L.
Meli
and
P. F.
Green
,
Acs Nano
2
,
1305
(
2008
).
7.
R.
Prasher
,
P. E.
Phelan
, and
P.
Bhattacharya
,
Nano Lett.
6
,
1529
(
2006
).
8.
The process discussed in this paper involves core-shell particles and the transport involving both liquid Al and solid Al2O3. As a result, the strictest definitions of both sintering and coalescence are not fully descriptive of the coarsening mechanism. However, we feel coalescence is a broader term and thus it is primarily used to refer to this process.
9.
J. W.
Chung
,
S. W.
Ko
,
N. R.
Bieri
,
C. P.
Grigoropoulos
, and
D.
Poulikakos
,
Appl. Phys. Lett.
84
,
801
(
2004
).
10.
A.
Sandmann
,
C.
Notthoff
, and
M.
Winterer
,
J. Appl. Phys.
113
,
044310
(
2013
).
11.
T.
Kim
,
C. H.
Lee
,
S. W.
Joo
, and
K.
Lee
,
J. Colloid Interface Sci.
318
,
238
(
2008
).
12.
C. T.
Campbell
,
S. C.
Parker
, and
D. E.
Starr
,
Science
298
,
811
(
2002
).
13.
A. K.
Datye
,
Q.
Xu
,
K. C.
Kharas
, and
J. M.
McCarty
,
Catal. Today
111
,
59
(
2006
).
14.
A. O.
Govorov
and
H. H.
Richardson
,
Nano Today
2
,
30
(
2007
).
15.
V. K.
Pustovalov
,
Chem. Phys.
308
,
103
(
2005
).
16.
E. L.
Dreizin
,
Prog. Energy Combust. Sci.
35
,
141
(
2009
).
17.
18.
K. T.
Sullivan
,
N. W.
Piekiel
,
C.
Wu
,
S.
Chowdhury
,
S. T.
Kelly
,
T. C.
Hufnagel
,
K.
Fezzaa
, and
M. R.
Zachariah
,
Combust. Flame
159
,
2
(
2012
).
19.
C.
Langhammer
,
E. M.
Larsson
,
B.
Kasemo
, and
I.
Zoric
,
Nano Lett.
10
,
3529
(
2010
).
20.
T.
LaGrange
,
G. H.
Campbell
,
B.
Reed
,
M.
Taheri
,
J. B.
Pesavento
,
J. S.
Kim
, and
N. D.
Browning
,
Ultramicroscopy
108
,
1441
(
2008
).
22.
B. W.
Reed
,
M. R.
Armstrong
,
N. D.
Browning
,
G. H.
Campbell
,
J. E.
Evans
,
T.
LaGrange
, and
D. J.
Masiel
,
Microsc. Microanal.
15
,
272
(
2009
).
23.
M. K.
Santala
,
B. W.
Reed
,
T.
Topuria
,
S.
Raoux
,
S.
Meister
,
Y.
Cui
,
T.
LaGrange
,
G. H.
Campbell
, and
N. D.
Browning
,
J. Appl. Phys.
111
,
024309
(
2012
).
24.
B.
Alinejad
and
K.
Mahmoodi
,
Int. J. Hydrogen Energy
34
,
7934
(
2009
).
25.
X. Y.
Huang
,
P. K.
Jiang
, and
C. U.
Kim
,
J. Appl. Phys.
102
,
124103
(
2007
).
26.
Y. N.
Zhang
,
Z.
Ouyang
,
N.
Stokes
,
B. H.
Jia
,
Z. R.
Shi
, and
M.
Gu
,
Appl. Phys. Lett.
100
,
151101
(
2012
).
27.
Y.
Ekinci
,
H. H.
Solak
, and
J. F.
Loffler
,
J. Appl. Phys.
104
,
083107
(
2008
).
28.
T. L.
Temple
and
D. M.
Bagnall
,
J. Appl. Phys.
109
,
084343
(
2011
).
29.
R. A.
Yetter
,
G. A.
Risha
, and
S. F.
Son
,
Proc. Combust. Inst.
32
,
1819
(
2009
).
30.
Y.
Huang
,
G. A.
Risha
,
V.
Yang
, and
R. A.
Yetter
,
Proc. Combust. Inst.
31
,
2001
(
2007
).
31.
W. K.
Lewis
,
C. G.
Rumchik
,
M. J.
Smith
,
K. A. S.
Fernando
,
C. A.
Crouse
,
J. E.
Spowart
,
E. A.
Guliants
, and
C. E.
Bunker
,
J. Appl. Phys.
113
,
044907
(
2013
).
32.
S.
Chowdhury
,
K.
Sullivan
,
N.
Piekiel
,
L.
Zhou
, and
M. R.
Zachariah
,
J. Phys. Chem. C
114
,
9191
(
2010
).
33.
D. W.
Mackowski
and
M. I.
Mishchenko
,
J. Quant. Spectrosc. Radiat. Transfer
112
,
2182
(
2011
).
34.
D. W.
Mackowski
and
M. I.
Mishchenko
(
2011
), http://www.eng.auburn.edu/users/dmckwski/scatcodes/.
35.
See supplementary material at http://dx.doi.org/10.1063/1.4867116 for details of the calculations and modeling referenced in this work are provided. This includes the estimation of surface area loss and the modeling of temperature under laser heating with both the T-matrix and finite-element approaches.
36.
The heating and temperature measurements are calibrated by the manufacturer. For a disperse sample using small particle sizes, it is assumed that temperature equilibrates quickly between the substrate and sample such that the temperature profile in the particles is equal to that of the SiNx film. This assumption is based in part on the calculations in Ref. 32.
37.
D. Y.
Smith
,
E.
Shiles
, and
M.
Inokuti
, in
Handbook of Optical Constants of Solids
, edited by
E. D.
Palick
(
Academic Press
,
Orlando
,
1985
), p.
369
.
38.
B. J.
Henz
,
T.
Hawa
, and
M. R.
Zachariah
,
J. Appl. Phys.
107
,
024901
(
2010
).
39.
Y.
Li
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
J. Appl. Phys.
114
,
134312
(
2013
).
40.
P.
Chakraborty
and
M. R.
Zachariah
, “
Do nanoenergetic particles remain nano-sized during combustion?
Combust. Flame
(in press), .
41.
D. A.
Firmansyah
,
K.
Sullivan
,
K. S.
Lee
,
Y. H.
Kim
,
R.
Zahaf
,
M. R.
Zachariah
, and
D.
Lee
,
J. Phys. Chem. C
116
,
404
(
2012
).
42.
T.
Bazyn
,
H.
Krier
, and
N.
Glumac
,
Combust. Flame
145
,
703
(
2006
).
43.
P.
Lynch
,
H.
Krier
, and
N.
Glumac
,
Proc. Combust. Inst.
32
,
1887
(
2009
).

Supplementary Material

You do not currently have access to this content.