The effect of heterovalent B-site doping on ergodicity of relaxor ferroelectrics is studied using (1 − y)(0.81Bi1/2Na1/2TiO3-0.19Bi1/2K1/2TiO3)-yBiZn1/2Ti1/2O3 (BNT-BKT-BZT) with y = {0.02;0.03;0.04} as a model system. Both the large- and small-signal parameters are studied as a function of electric field. The crystal structure is assessed by means of neutron diffraction in the initial state and after exposure to a high electric field. In order to measure ferroelastic domain textures, diffraction patterns of the poled samples are collected as a function of sample rotation angle. Piezoresponse force microscopy (PFM) is employed to probe the microstructure for polar regions at a nanoscopic scale. For low electric fields E < 2 kV·mm−1, large- and small-signal constitutive behavior do not change with composition. At high electric fields, however, drastic differences are observed due to a field-induced phase transition into a long-range ordered state. It is hypothesized that increasing BZT content decreases the degree of non-ergodicity; thus, the formation of long-range order is impeded. It is suggested that frozen and dynamic polar nano regions exist to a different degree, depending on the BZT content. This image is supported by PFM measurements. Moreover, PFM measurements suggest that the relaxation mechanism after removal of the bias field is influenced by surface charges.

1.
J.
Macutkevic
,
J.
Banys
, and
R.
Grigalaitis
,
Appl. Phys. Lett.
98
,
016101
(
2011
).
2.
Off. J. Eur. Union 46,
24
(
2003
).
3.
J.
Rödel
,
W.
Jo
,
K. T. P.
Seifert
,
E. M.
Anton
,
T.
Granzow
, and
D.
Damjanovic
,
J. Am. Ceram. Soc.
92
,
1153
(
2009
).
4.
B.
Jaffe
,
R. S.
Roth
, and
S.
Marzullo
,
J. Appl. Phys.
25
,
809
(
1954
).
5.
K. T. P.
Seifert
,
W.
Jo
, and
J.
Rödel
,
J. Am. Ceram. Soc.
93
,
1392
(
2010
).
6.
E. A.
Patterson
,
D. P.
Cann
,
J.
Pokorny
, and
I. M.
Reaney
,
J. Appl. Phys.
111
,
094105
(
2012
).
7.
A.
Ullah
,
C. W.
Ahn
,
A.
Hussain
,
S. Y.
Lee
,
H. J.
Lee
, and
I. W.
Kim
,
Curr. Appl. Phys.
10
,
1174
(
2010
).
8.
W.
Jo
,
R.
Dittmer
,
M.
Acosta
,
J.
Zang
,
C.
Groh
,
E.
Sapper
,
K.
Wang
, and
J.
Rödel
,
J. Electroceram.
29
,
71
(
2012
).
9.
R.
Dittmer
,
E.
Aulbach
,
W.
Jo
,
K. G.
Webber
, and
J.
Rödel
,
Scr. Mater.
67
,
100
(
2012
).
10.
S. T.
Zhang
,
A. B.
Kounga
,
E.
Aulbach
,
H.
Ehrenberg
, and
J.
Rödel
,
Appl. Phys. Lett.
91
,
112906
(
2007
).
11.
J. E.
Daniels
,
W.
Jo
,
J.
Rödel
, and
J. L.
Jones
,
Appl. Phys. Lett.
95
,
032904
(
2009
).
12.
H.
Simons
,
J.
Daniels
,
W.
Jo
,
R.
Dittmer
,
A.
Studer
,
M.
Avdeev
,
J.
Rödel
, and
M.
Hoffman
,
Appl. Phys. Lett.
98
,
082901
(
2011
).
13.
M.
Hinterstein
,
M.
Knapp
,
M.
Hölzel
,
W.
Jo
,
A.
Cervellino
, and
H.
Ehrenberg
,
J. Appl. Cryst.
43
,
1314
(
2010
).
14.
A. J.
Royles
,
A. J.
Bell
,
A. P.
Jephcoat
,
A. K.
Kleppe
,
S. J.
Milne
, and
T. P.
Comyn
,
Appl. Phys. Lett.
97
,
132909
(
2010
).
15.
R.
Dittmer
,
W.
Jo
,
J.
Rödel
,
S.
Kalinin
, and
N.
Balke
,
Adv. Funct. Mater.
22
,
4208
(
2012
).
16.
W.
Jo
,
T.
Granzow
,
E.
Aulbach
,
J.
Rödel
, and
D.
Damjanovic
,
J. Appl. Phys.
105
,
094102
(
2009
).
17.
K.
Yoshii
,
Y.
Hiruma
,
H.
Nagata
, and
T.
Takenaka
,
Jpn. J. Appl. Phys., Part 1
45
,
4493
(
2006
).
18.
A.
Sasaki
,
T.
Chiba
,
Y.
Mamiya
, and
E.
Otsuki
,
Jpn. J. Appl. Phys., Part 1
38
,
5564
(
1999
).
19.
I.
Levin
,
I. M.
Reaney
,
E. M.
Anton
,
W.
Jo
,
J.
Rödel
,
J.
Pokorny
,
L. A.
Schmitt
,
H. J.
Kleebe
,
M.
Hinterstein
, and
J. L.
Jones
,
Phys. Rev. B
87
,
024113
(
2013
).
20.
R.
Dittmer
,
W.
Jo
,
J.
Daniels
,
S.
Schaab
, and
J.
Rödel
,
J. Am. Ceram. Soc.
94
,
4283
(
2011
).
21.
W.
Kleemann
,
J. Mater. Sci.
41
,
129
(
2006
).
22.
L.
Boltzmann
,
Wien. Ber.
96
,
891
(
1887
).
23.
K.
Binder
and
A. P.
Young
,
Rev. Mod. Phys.
58
,
801
(
1986
).
24.
D.
Viehland
,
S. J.
Jang
,
L. E.
Cross
, and
M.
Wuttig
,
J. Appl. Phys.
68
,
2916
(
1990
).
25.
D.
Viehland
,
M.
Wuttig
, and
L. E.
Cross
,
Ferroelectrics
120
,
71
(
1991
).
26.
A. A.
Bokov
and
Z. G.
Ye
,
J. Mater. Sci.
41
,
31
(
2006
).
27.
Z. G.
Ye
,
Oxides
(
Trans Tech Publications
,
Clausthal-Zellerfeld
,
1998
), Vol.
155-1
, p.
81
.
28.
R.
Dittmer
,
W.
Jo
,
E.
Aulbach
,
T.
Granzow
, and
J.
Rödel
,
J. Appl. Phys.
112
,
014101
(
2012
).
29.
N.
Balke
,
D. C.
Lupascu
,
T.
Granzow
, and
J.
Rödel
,
J. Am. Ceram. Soc.
90
,
1081
(
2007
).
30.
I.
Horcas
,
R.
Fernandez
,
J. M.
Gomez-Rodriguez
,
J.
Colchero
,
J.
Gomez-Herrero
, and
A. M.
Baro
,
Rev. Sci. Instrum.
78
,
013705
(
2007
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4867157 for an exemplary figure.
32.
E. V.
Colla
,
E. Y.
Koroleva
,
N. M.
Okuneva
, and
S. B.
Vakhrushev
,
Phys. Rev. Lett.
74
,
1681
(
1995
).
33.
D.
Wang
,
X.
Ke
,
Y.
Wang
,
J.
Gao
,
Y.
Wang
,
L.
Zhang
,
S.
Yang
, and
X.
Ren
,
Phys. Rev. B
86
,
054120
(
2012
).
34.
S. V.
Kalinin
,
B. J.
Rodriguez
,
S.
Jesse
,
A. N.
Morozovska
,
A. A.
Bokov
, and
Z. G.
Ye
,
Appl. Phys. Lett.
95
,
142902
(
2009
).
35.
V. V.
Shvartsman
and
A. L.
Kholkin
,
J. Adv. Dielectr.
02
,
1241003
(
2012
).
36.
W.
Kleemann
,
J.
Dec
,
V. V.
Shvartsman
,
Z.
Kutnjak
, and
T.
Braun
,
Phys. Rev. Lett.
97
,
065702
(
2006
).
37.
P.
Lehnen
,
J.
Dec
,
W.
Kleemann
,
T. H.
Woike
, and
R.
Pankrath
,
Ferroelectrics
240
,
1547
(
2000
).
38.
P.
Bonneau
,
P.
Garnier
,
G.
Calvarin
,
E.
Husson
,
J. R.
Gavarri
,
A. W.
Hewat
, and
A.
Morell
,
J. Solid State Chem.
91
,
350
(
1991
).
39.
A. H.
Meitzler
and
H. M.
O'Bryan
, Jr.
,
Proc. IEEE
61
,
959
(
1973
).
40.
G. O.
Jones
and
P. A.
Thomas
,
Acta Crystallogr., Sect. B
58
,
168
(
2002
).
41.
A.
Glazer
,
Acta Crystallogr., Sect. B
28
,
3384
(
1972
).
42.
E.
Aksel
,
J. S.
Forrester
,
J. L.
Jones
,
P. A.
Thomas
,
K.
Page
, and
M. R.
Suchomel
,
Appl. Phys. Lett.
98
,
152901
(
2011
).
43.
V. V.
Shvartsman
,
A. L.
Kholkin
,
A.
Orlova
,
D.
Kiselev
,
A. A.
Bogomolov
, and
A.
Sternberg
,
Appl. Phys. Lett.
86
,
202907
(
2005
).
44.
V. V.
Shvartsman
and
A. L.
Kholkin
,
J. Appl. Phys.
101
,
064108
(
2007
).

Supplementary Material

You do not currently have access to this content.