Cobalt germanide (CoxGey) is a candidate system for low resistance contact modules in future Ge devices in Si-based micro and nanoelectronics. In this paper, we present a detailed structural, morphological, and compositional study on CoxGey formation on Ge(001) at room temperature metal deposition and subsequent annealing. Scanning tunneling microscopy and low energy electron diffraction clearly demonstrate that room temperature deposition of approximately four monolayers of Co on Ge(001) results in the Volmer Weber growth mode, while subsequent thermal annealing leads to the formation of a Co-germanide continuous wetting layer which evolves gradually towards the growth of elongated CoxGey nanostructures. Two types of CoxGey nanostructures, namely, flattop- and ridge-type, were observed and a systematic study on their evolution as a function of temperature is presented. Additional transmission electron microscopy and x-ray photoemission spectroscopy measurements allowed us to monitor the reaction between Co and Ge in the formation process of the CoxGey continuous wetting layer as well as the CoxGey nanostructures.

1.
R.
Doering
and
N.
Yoshio
,
Handbook of Semiconductor Manufacturing Technology
, 2nd ed. (
CRC Press
,
2007
).
2.
G.
Capellini
,
G.
Kozlowski
,
Y.
Yamamoto
,
M.
Lisker
,
C.
Wenger
,
G.
Niu
,
P.
Zaumseil
,
B.
Tillack
,
A.
Ghrib
,
M.
de Kersauson
,
M.
El Kurdi
,
P.
Boucaud
, and
T.
Schroeder
,
J. Appl. Phys.
113
,
013513
(
2013
).
3.
G.
Kozlowski
,
Y.
Yamamoto
,
J.
Bauer
,
M. A.
Schubert
,
B.
Dietrich
,
B.
Tillack
, and
T.
Schroeder
,
J. Appl. Phys.
110
,
053509
(
2011
).
4.
J.
Wang
and
S.
Lee
,
Sensors
11
,
696
718
(
2011
).
5.
A.
Chawanda
,
C.
Nyamhere
,
F. D.
Auret
,
W.
Mtangi
,
T. T.
Hlatshwayo
,
M.
Diale
, and
J. M.
Nel
,
Phys. B: Condens. Matter
404
,
4482
(
2009
).
6.
A.
Chawanda
,
C.
Nyamhere
,
F. D.
Auret
,
W.
Mtangi
,
M.
Diale
, and
J. M.
Nel
,
Phys. Status Solidi C
7
,
248
(
2010
).
7.
K.
Ishida
and
T.
Nishizawa
,
J. Phase Equilib.
12
,
77
83
(
1991
).
8.
S.
Gaudet
,
C.
Detavernier
,
A. J.
Kellock
,
P.
Desjardins
, and
C.
Lavoie
,
J. Vac. Sci. Technol., A
24
,
474
(
2006
).
9.
S. P.
Ashburn
,
M. C.
Oüztuürk
,
G.
Harris
, and
D. M.
Maher
,
J. Appl. Phys.
74
,
4455
(
1993
).
10.
Y. F.
Hsieh
,
L. J.
Chen
,
E. D.
Marshall
, and
S. S.
Lau
,
Appl. Phys. Lett.
51
,
1588
(
1987
).
11.
H. P.
Sun
,
Y. B.
Chen
,
X. Q.
Pan
,
D. Z.
Chi
,
R.
Nath
, and
Y. L.
Foo
,
Appl. Phys. Lett.
87
,
211909
(
2005
).
12.
A.
Tsuruta
,
W. G.
Chu
,
K.
Tamura
,
H.
Ishii
,
M.
Owari
, and
Y.
Nihei
,
Surf. Interface Anal.
37
,
230
234
(
2005
).
13.
K.
Opsomer
,
D.
Deduytsche
,
C.
Detavernier
,
R. L.
Van Meirhaeghe
,
A.
Lauwers
,
K.
Maex
, and
C.
Lavoie
,
Appl. Phys. Lett.
90
,
031906
(
2007
).
14.
K.
Prabhakaran
and
T.
Ogino
,
Appl. Surf. Sci.
100–101
,
518
521
(
1996
).
15.
J. A.
Kittl
,
K.
Opsomer
,
C.
Torregiani
,
C.
Demeurisse
,
S.
Mertens
,
D. P.
Brunco
,
M. J. H.
Van Dal
, and
A.
Lauwers
,
Mater. Sci. Eng., B
154–155
,
144
154
(
2008
).
16.
I.
Goldfarb
and
G. A. D.
Briggs
,
J. Mater. Res.
16
,
744
(
2001
).
17.
I.
Goldfarb
and
G. A. D.
Briggs
,
J. Vac. Sci. Technol. B
20
,
1419
(
2002
).
18.
K.
Sell
,
A.
Kleibert
,
V. V.
Oeynhausen
, and
K.-H.
Meiwes-Broer
,
Eur. Phys. J. D
45
,
433
437
(
2007
).
19.
J.
Choi
,
D. K.
Lim
,
Y.
Kim
, and
S.
Kim
,
J. Phys. Chem. C
114
,
8992
(
2010
).
20.
T. F.
Mocking
,
G.
Hlawacek
, and
H. J. W.
Zandvliet
,
Surf. Sci.
606
,
924
927
(
2012
).
21.
H. J. W.
Zandvliet
,
A.
van Houselt
, and
P.
Hegeman
,
Surf. Sci.
605
,
1129
1132
(
2011
).
22.
D. A.
Muzychenko
,
K.
Schouteden
,
V. I.
Panov
, and
C.
van Haesendonck
,
Nanotechnology
23
,
435605
(
2012
).
23.
E.
Simoen
,
K.
Opsomer
,
C.
Claeys
,
K.
Maex
,
C.
Detavernier
,
R. L.
Van Meirhaeghe
, and
P.
Clauws
,
J. Appl. Phys.
104
,
023705
(
2008
).
24.
H. J. W.
Zandvliet
,
B. S.
Swartzentruber
,
W.
Wulfhekel
, and
B. J.
Hattink
,
Phys. Rev. B
57
,
1356
(
1998
).
25.
H. J. W.
Zandvliet
,
Phys. Rep.
388
,
1
40
(
2003
).
26.
J. A.
Kubby
,
J. E.
Griffith
,
R. S.
Becker
, and
J. S.
Vickers
,
Phys. Rev. B
36
,
6079
(
1987
).
27.
T.
Schroeder
,
J. B.
Giorgi
,
A.
Hammoudeh
,
N.
Magg
,
M.
Bäumer
, and
H.-J.
Freund
,
Phys. Rev. B
65
,
115411
(
2002
).
29.
J.
Choi
,
D. K.
Lim
,
Y.
Kim
,
D. H.
Kim
, and
S.
Kim
,
Phys. Rev. B
82
,
201305
(
2010
).
30.
N. C.
Bartelt
,
W.
Theis
, and
R. M.
Tromp
,
Phys. Rev. B
54
,
11741
(
1996
), available at http://www.ncbi.nlm.nih.gov/pubmed/9984965.
31.
H. P.
Sun
,
Y. B.
Chen
,
X. Q.
Pan
,
D. Z.
Chi
,
R.
Nath
, and
Y. L.
Foo
,
Appl. Phys. Lett.
86
,
071904
(
2005
).
32.
V.
Kinsinger
,
I.
Dezsi
,
P.
Steiner
, and
G.
Langouche
,
J. Phys. F: Met. Phys.
18
,
1515
(
1988
).
33.
C.
Pirri
,
J. C.
Peruchetti
,
G.
Gewinner
, and
J.
Derrien
,
Phys. Rev. B
29
,
3391
(
1984
).
34.
J.
Gallego
,
R.
Miranda
,
S.
Molodtsov
,
C.
Laubschat
, and
G.
Kaindl
,
Surf. Sci.
239
,
203
(
1990
).
35.
B. L.
Ong
,
W.
Ong
,
Y. L.
Foo
,
J.
Pan
, and
E. S.
Tok
,
Surf. Sci.
606
,
1649
(
2012
).
36.
Th.
Schmidt
,
J. I.
Flege
,
S.
Gangopadhyay
,
T.
Clausen
,
A.
Locatelli
,
S.
Heun
, and
J.
Falta
,
Phys. Rev. Lett.
98
,
066104
(
2007
).
You do not currently have access to this content.