We introduce a rear-emitter inversion layer (IL) solar cell on n-type crystalline silicon (n-Si). The hole IL is induced by the high density of negative fixed charges in an aluminum oxide (Al2O3) surface passivation layer. For the formation of contacts to the inversion layer, we employ a single-step p+ laser doping process, using aluminum from the Al2O3 layer as dopant source. Lateral hole transport through the IL underneath the n-Si/Al2O3 interface is analyzed by electrical measurements. The IL hole mobility is shown to be only marginally reduced by scattering at the high density of fixed charges at the n-Si/Al2O3 interface, resulting in an inversion layer sheet resistance of 15–18 kΩ/sq (in the dark). The effective sheet resistance of the IL is shown to decrease to below 4 kΩ/sq under solar cell operating conditions. Based on two-dimensional device simulations, we show that the proposed type of n-type silicon IL solar cell has a very high efficiency potential exceeding 26% including contact recombination losses.

1.
G.
Agostinelli
,
A.
Delabie
,
P.
Vitanov
,
Z.
Alexieva
,
H. F. W.
Dekkers
,
S.
De Wolf
, and
G.
Beaucarne
,
Sol. Energy Mater. Sol. Cells
90
,
3438
(
2006
).
2.
B.
Hoex
,
S. B. S.
Heil
,
E.
Langereis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
89
,
042112
(
2006
).
3.
G.
Dingemans
and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
30
,
040802
(
2012
).
4.
P.
Saint-Cast
,
D.
Kania
,
M.
Hofmann
,
J.
Benick
,
J.
Rentsch
, and
R.
Preu
,
Appl. Phys. Lett.
95
,
151502
(
2009
).
5.
T.-T.
Li
and
A.
Cuevas
,
Phys. Status Solidi (RRL)
3
,
160
(
2009
).
6.
B.
Hoex
,
J. J. H.
Gielis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
104
,
113703
(
2008
).
7.
F.
Werner
,
B.
Veith
,
D.
Zielke
,
L.
Kühnemund
,
C.
Tegenkamp
,
M.
Seibt
,
R.
Brendel
, and
J.
Schmidt
,
J. Appl. Phys.
109
,
113701
(
2011
).
8.
N. M.
Terlinden
,
G.
Dingemans
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
96
,
112101
(
2010
).
9.
R. B.
Godfrey
and
M. A.
Green
,
IEEE Trans. Electron Devices
27
,
737
(
1980
).
11.
B.
Kuhlmann
,
A. G.
Aberle
,
R.
Hezel
, and
G.
Heiser
,
IEEE Trans. Electron Devices
47
,
2167
(
2000
).
12.
I.
Martin
,
R.
Lövblom
, and
R.
Alcubilla
, in
Proceedings of the 24th European Photovoltaic Solar Energy Conference (EU PVSEC)
(
Hamburg
,
Germany
,
2009
), p.
1985
.
13.
F.
Werner
,
A.
Cosceev
, and
J.
Schmidt
,
Energy Proc.
27
,
319
(
2012
).
14.
P.
Ortega
,
I.
Martin
,
G.
Lopez
,
M.
Colina
,
A.
Orpella
,
C.
Voz
, and
R.
Alcubilla
,
Sol. Energy Mater. Sol. Cells
106
,
80
(
2012
).
15.
M.
Colina
,
I.
Martin
,
C.
Voz
,
A.
Morales-Vilches
,
P.
Ortega
,
G.
Lopez
,
A.
Orpella
,
R.
Alcubilla
,
I.
Sanchez-Aniorte
, and
C.
Molpeceres
, in
Proceedings of the 27th European Photovoltaic Solar Energy Conference (EU PVSEC)
(
Frankfurt
,
Germany
,
2012
), p.
1885
.
16.
N.-P.
Harder
,
Y.
Larionova
, and
R.
Brendel
,
Phys. Status Solidi A
210
,
1871
(
2013
).
17.
R.
Sidhu
,
M.
Bennett
,
J.
Zahler
, and
D.
Carlson
, in
Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC)
(
Seattle
,
WA
,
2011
), p.
2937
.
18.
D.
Zielke
,
J. H.
Petermann
,
F.
Werner
,
B.
Veith
,
R.
Brendel
, and
J.
Schmidt
,
Phys. Status Solidi (RRL)
5
(
8
),
298
(
2011
).
19.
M. A.
Green
,
Solar Cells
(
University of New South Wales
,
Kensington
,
1992
).
20.
See http://www.synopsys.com/Tools/TCAD for Sentaurus-Device, Synopsys Inc., Mountain View, CA.
21.
B.
Kuhlmann
, Dissertation (in German),
Universität Hannover
,
1998
.
22.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
,
New York
,
1981
), pp.
438
442
.
23.
J. T.
Watt
and
J. D.
Plummer
, “
Universal mobility-field curves for electrons and holes in MOS inversion layers
,” in
Digest of Technical Papers, Symposium on VLSI Technology
(Karuizawa, Japan,
1987
), p.
81
.
24.
R.
Girisch
,
R.
Mertens
, and
R.
de Keersmaecker
,
IEEE Trans. Electron Devices
35
,
203
(
1988
).
25.
W. B.
Joyce
and
R. W.
Dixon
,
Appl. Phys. Lett.
31
(
5
),
354
(
1977
).
26.
V. M.
Agostinelli
,
H.
Shin
, and
A. F.
Tasch
,
IEEE Trans. Electron Devices
38
,
151
(
1991
).
27.
G.
Dingemans
,
N. M.
Terlinden
,
M. A.
Verheijen
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
110
,
093715
(
2011
).
28.
F.
Werner
,
A.
Cosceev
, and
J.
Schmidt
,
J. Appl. Phys.
111
,
073710
(
2012
).
29.
D. E.
Kane
and
R. M.
Swanson
, in
Proceedings of the 18th IEEE Photovoltaic Specialists Conference (PVSC)
(
Las Vegas
,
NV
,
1985
), p.
578
.
30.
A.
Richter
,
S. W.
Glunz
,
F.
Werner
,
J.
Schmidt
, and
A.
Cuevas
,
Phys. Rev. B
86
,
165202
(
2012
).
31.
R.
Sinton
,
A.
Cuevas
, and
M.
Stuckings
, in
Proceedings of the 25th IEEE Photovoltaic Specialists Conference (PVSC)
(
Washington D.C.
,
1996
), p.
457
.
32.
S.
Dauwe
,
L.
Mittelstädt
,
A.
Metz
, and
R.
Hezel
,
Prog. Photovolt.: Res. Appl.
10
,
271
(
2002
).
33.
A.
Cuevas
,
P. A.
Basore
,
G.
Giroult-Matlakowski
, and
C.
Dubois
,
J. Appl. Phys.
80
(
6
),
3370
(
1996
).
34.
R. R.
King
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
38
(
6
),
1399
(
1991
).
35.
A.
Cuevas
,
M.
Stuckings
,
J.
Lau
, and
M.
Petravic
, in
Proceedings of the 14th European Photovoltaic Solar Energy Conference (EUPVSEC)
(
Barcelona
,
Spain
,
1997
), p.
2416
.
36.
F.
Feldmann
,
M.
Bivour
,
C.
Reichel
,
M.
Hermle
, and
S. W.
Glunz
,
Sol. Energy Mater. Sol. Cells
120
,
270
(
2014
).
37.
M.
Wolf
and
H.
Rauschenbach
,
Adv. Energy Conversion
3
,
455
(
1963
).
38.
A. S.
Erickson
,
N. K.
Kedem
,
A. E.
Haj-Yahia
, and
D.
Cahen
,
Appl. Phys. Lett.
101
,
233901
(
2012
).
39.
R.
Brendel
, in
Proceedings of the 12th European Photovoltaic Solar Energy Conference (EU PVSEC)
(
Amsterdam
,
Netherlands
,
1994
), p.
1339
.
40.
B.
Hoex
,
J.
Schmidt
,
R.
Bock
,
P. P.
Altermatt
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
91
,
112107
(
2007
).
You do not currently have access to this content.