This article presents a hand-held electromagnetic energy harvester which can be used to harvest tens of mW power level from human body motion. A magnet array, aligned to a coil array for maximum magnetic flux change, is suspended by a magnetic spring for a resonant frequency of several Hz and is stabilized horizontally by graphite sheets for reducing the friction. An analytical model of vibration-driven energy harvester with magnetic spring through magnet and coil arrays is developed to explore the power generation from vibrations at low frequency and large amplitude. When the energy harvester (occupying 120 cc and weighing 180 g) is placed in a backpack of a human walking at various speeds, the power output increases as the walking speed increases from 0.45 m/s (slow walking) to 3.58 m/s (slow running), and reaches 32 mW at 3.58 m/s.

1.
A.
Hajati
and
S.-G.
Kim
,
Appl. Phys. Lett.
99
,
083105
(
2011
).
2.
E.
Bouendeu
,
A.
Greiner
,
P. J.
Smith
, and
J. G.
Korvink
,
J. Microelectromech. Syst.
20
,
466
(
2011
).
3.
C. P.
Le
and
E.
Halvorsen
,
J. Micromech. Microeng.
22
,
074013
(
2012
).
4.
S.-M.
Jung
and
K.-S.
Yun
,
Appl. Phys. Lett.
96
,
111906
(
2010
).
5.
B.
Yang
,
J.
Liu
,
G.
Tang
,
J.
Luo
,
C.
Yang
, and
Y.
Li
,
Appl. Phys. Lett.
99
,
223505
(
2011
).
6.
I.
Sari
,
T.
Balkan
, and
H.
Külah
,
J. Microelectromech. Syst.
19
,
14
(
2010
).
7.
H.
Külah
and
K.
Najafi
, in
Proceeding of IEEE MEMS
(
2004
), p.
237
.
8.
A.
Riduan Md. Foisal
,
C.
Hong
, and
G.-S.
Chung
,
Sens. Actuators, A
182
,
106
(
2012
).
9.
C. R.
Saha
,
T.
O'Donnell
,
N.
Wang
, and
P.
McCloskey
,
Sens. Actuators, A
147
,
248
(
2008
).
10.
Q.
Zhang
and
E. S.
Kim
, in
Proceedings of IEEE MEMS
(
2013
), p.
110
.
You do not currently have access to this content.