We report on the experimental study of the propagation of nonlinearly generated harmonic spin waves in microscopic CoFeB stripes. Using an all electrical technique with coplanar waveguides, we find that two kinds of spin waves can be generated by nonlinear frequency multiplication. One has a non-uniform spatial geometry and thus requires appropriate detector geometry to be identified. The other corresponds to the resonant fundamental propagative spin waves and can be efficiently excited by double- or triple-frequency harmonics with any geometry. Nonlinear excited spin waves are particularly efficient in providing an electrical signal arising from spin wave propagation.

1.
A.
Khitun
,
M.
Bao
, and
K. L.
Wang
,
J. Phys. D: Appl. Phys.
43
,
264005
(
2010
).
2.
A.
Khitun
and
K. L.
Wang
,
J. Appl. Phys.
110
,
034306
(
2011
).
3.
M. P.
Kostylev
,
A. A.
Serga
,
T.
Schneider
,
B.
Leven
, and
B.
Hillebrands
,
Appl. Phys. Lett.
87
,
153501
(
2005
).
4.
V.
Vlaminck
and
M.
Bailleul
,
Science
322
,
410
(
2008
).
5.
K.
Vogt
,
H.
Schultheiss
,
S.
Jain
,
J. E.
Pearson
,
A.
Hoffmann
,
S. D.
Bader
, and
B.
Hillebrands
,
Appl. Phys. Lett.
101
,
042410
(
2012
).
6.
H.
Ulrichs
,
V. E.
Demidov
,
S. O.
Demokritov
, and
S.
Urazhdin
,
Appl. Phys. Lett.
100
,
162406
(
2012
).
7.
R.
Huber
,
M.
Krawczyk
,
T.
Schwarze
,
H.
Yu
,
G.
Duerr
,
S.
Albert
, and
D.
Grundler
,
Appl. Phys. Lett.
102
,
012403
(
2013
).
8.
R.
Lassalle-Balier
and
C.
Fermon
,
J. Appl. Phys.
109
,
07E528
(
2011
).
9.
M.
Bailleul
,
D.
Olligs
, and
C.
Fermon
,
Appl. Phys. Lett.
83
,
972
(
2003
).
10.
V. E.
Demidov
,
M. P.
Kostylev
,
K.
Rott
,
P.
Krzysteczko
,
G.
Reiss
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
95
,
112509
(
2009
).
11.
M.
Bao
,
A.
Khitun
,
Y.
Wu
,
J.-Y.
Lee
,
K. L.
Wang
, and
A. P.
Jacob
,
Appl. Phys. Lett.
93
,
072509
(
2008
).
12.
V. E.
Demidov
,
M. P.
Kostylev
,
K.
Rott
,
P.
Krzysteczko
,
G.
Reiss
, and
S. O.
Demokritov
,
Phys. Rev. B
83
,
054408
(
2011
).
13.
V. E.
Demidov
,
H.
Ulrichs
,
S.
Urazhdin
,
S. O.
Demokritov
,
V.
Bessonov
,
R.
Gieniusz
, and
A.
Maziewski
,
Appl. Phys. Lett.
99
,
012505
(
2011
).
14.
Y.
Khivintsev
,
J.
Marsh
,
V.
Zagorodnii
,
I.
Harward
,
J.
Lovejoy
,
P.
Krivosik
,
R. E.
Camley
, and
Z.
Celinski
,
Appl. Phys. Lett.
98
,
042505
(
2011
).
15.
J.
Marsh
,
V.
Zagorodnii
,
Z.
Celinski
, and
R. E.
Camley
,
Appl. Phys. Lett.
100
,
102404
(
2012
).
16.
T.
Sebastian
,
T.
Brächer
,
P.
Pirro
,
A. A.
Serga
,
B.
Hillebrands
,
T.
Kubota
,
H.
Naganuma
,
M.
Oogane
, and
Y.
Ando
,
Phys. Rev. Lett.
110
,
067201
(
2013
).
17.
V.
Vlaminck
and
M.
Bailleul
,
Phys. Rev. B
81
,
014425
(
2010
).
18.
H.
Yu
,
R.
Huber
,
T.
Schwarze
,
F.
Brandl
,
T.
Rapp
,
P.
Berberich
,
G.
Duerr
, and
D.
Grundler
Appl. Phys. Lett.
100
,
262412
(
2012
).
19.
D. D.
Stancil
,
Theory of Magnetostatic Waves
(
Spinger
,
Berlin
,
1993
).
20.
A. G.
Gurevich
and
G. A.
Melkov
,
Magnetization Oscillation and Waves
(
CRC
,
Boca Raton
,
1996
).
21.
P. H.
Vartanian
and
E. N.
Skomal
,
Inst. Radio Eng. Convent. Record
1957
,
52
.
22.
E. N.
Skomal
and
M. A.
Medina
,
J. Appl. Phys.
30
,
S161
S162
(
1959
).
23.
M.
Covington
,
T. M.
Crawford
, and
G. J.
Parker
,
Phys. Rev. Lett.
89
,
237202
(
2002
).
You do not currently have access to this content.