Due to the high intrinsic thermal conductivity, carbon nanotubes are very promising to serve as effective thermal interface materials for microelectronics or other cooling applications. However, the performance of carbon nanotube based thermal interface material is strongly limited by the small effective contact area and weak bonding at carbon nanotube and material interface. Here, we propose a junction structure that the carbon nanotube is bonded with a monolayer graphene, which could potentially enhance the interface thermal conductance. Molecular dynamics simulations show that the interface thermal conductance can be enhanced by at least 40% compared to direct carbon nanotube and silicon interface with strong covalent bonding, while for weak van der Waals bonding the conductance can be enhanced by almost one order of magnitude. The enhancement of thermal conductance is attributed to the efficient thermal transport between carbon nanotube and graphene, as well as the good contact between graphene and silicon surface.

1.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
2.
R.
Prasher
,
Proc. IEEE
94
,
1571
(
2006
).
3.
B. A.
Cola
,
X.
Xu
, and
T. S.
Fisher
,
Appl. Phys. Lett.
90
,
093513
(
2007
).
4.
A. A.
Balandin
,
Nature Mater.
10
,
569
(
2011
).
5.
B. A.
Cola
,
J.
Xu
,
C.
Cheng
,
X.
Xu
,
T. S.
Fisher
, and
H.
Hu
,
J. Appl. Phys.
101
,
054313
(
2007
).
6.
M.
Hu
,
P.
Keblinski
,
J.-S.
Wang
, and
N.
Raravikar
,
J. Appl. Phys.
104
,
083503
(
2008
).
7.
Z.-Y.
Ong
and
E.
Pop
,
Phys. Rev. B
81
,
155408
(
2010
).
8.
J.
Diao
,
D.
Srivastava
, and
M.
Menon
,
J. Chem. Phys.
128
,
164708
(
2008
).
9.
Y.
Wang
,
X.
Ruan
, and
A. K.
Roy
,
Phys. Rev. B
85
,
205311
(
2012
).
10.
B.
Qiu
and
X.
Ruan
,
Appl. Phys. Lett.
100
,
193101
(
2012
).
11.
H.
Liu
,
H.
Zeng
,
T.
Pan
,
W.
Huang
, and
Y.
Lin
,
J. Appl. Phys.
112
,
053501
(
2012
).
12.
L.
Sun
and
J. Y.
Murthy
,
J. Heat Transfer
132
,
102403
(
2010
).
13.
W.-P.
Hsieh
,
A. S.
Lyons
,
E.
Pop
,
P.
Keblinski
, and
D. G.
Cahill
,
Phys. Rev. B
84
,
184107
(
2011
).
14.
Z.
Tian
,
K.
Esfarjani
, and
G.
Chen
,
Phys. Rev. B
86
,
235304
(
2012
).
15.
M.
Hu
,
X.
Zhang
,
D.
Poulikakos
, and
C. P.
Grigoropoulos
,
Int. J. Heat Mass Transfer
54
,
5183
(
2011
).
16.
T. S.
English
,
J. C.
Duda
,
J. L.
Smoyer
,
D. A.
Jordan
,
P. M.
Norris
, and
L. V.
Zhigilei
,
Phys. Rev. B
85
,
035438
(
2012
).
17.
M.
Hu
and
D.
Poulikako
,
Int. J. Heat Mass Transfer
62
,
205
(
2013
).
18.
P. E.
Hopkins
,
K.
Hattar
,
T.
Beechem
,
J. F.
Ihlefeld
,
D. L.
Medlin
, and
E. S.
Piekos
,
Appl. Phys. Lett.
98
,
231901
(
2011
).
19.
P. E.
Hopkins
,
M.
Baraket
,
E. V.
Barnat
,
T. E.
Beechem
,
S. P.
Kearney
,
J. C.
Duda
,
J. T.
Robinson
, and
S. G.
Walton
,
Nano Lett.
12
,
590
(
2012
).
20.
V.
Varshney
,
S. S.
Patnaik
,
A. K.
Roy
,
G.
Froudakis
, and
B. L.
Farmer
,
ACS Nano
4
,
1153
(
2010
).
21.
Y.-S.
Kim
,
K.
Kumar
,
F. T.
Fisher
, and
E.-H.
Yang
,
Nanotechnology
23
,
015301
(
2012
).
22.
A. K.
Vallabhaneni
,
B.
Qiu
,
J. N.
Hu
,
Y. P.
Chen
,
A. K.
Roy
, and
X. L.
Ruan
,
J. Appl. Phys.
113
,
064311
(
2013
).
23.
Y.
Xu
,
K. T.
He
,
S. W.
Schmucker
,
Z.
Guo
,
J. C.
Koepke
,
J. D.
Wood
,
J. W.
Lyding
, and
N. R.
Aluru
,
Nano Lett.
11
,
2735
(
2011
).
24.
J.
Lee
,
V.
Varshney
,
J. S.
Brown
,
A. K.
Roy
, and
B. L.
Farmer
,
Appl. Phys. Lett.
100
,
183111
(
2012
).
25.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
Fabris
,
G.
Fratesi
,
S.
de Gironcoli
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
26.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
27.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
28.
H.
Bao
,
B. F.
Habenicht
,
O. V.
Prezhdo
, and
X. L.
Ruan
,
Phys. Rev. B
79
,
235306
(
2009
).
29.
H.
Bao
,
B.
Qiu
,
Y.
Zhang
, and
X. L.
Ruan
,
J. Quantum Spectrosc. Radiat. Transfer
113
,
1683
(
2012
).
30.
L.
Lindsay
and
D. A.
Broido
,
Phys. Rev. B
81
,
205441
(
2010
).
31.
J.
Tersoff
,
Phys. Rev. B
37
,
6991
(
1988
).
32.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
33.
G.
Balasubramanian
and
I. K.
Puri
,
Appl. Phys. Lett.
99
,
013116
(
2011
).
34.
Z. T.
Tian
,
J. B. E.
White
, and
Y.
Sun
,
Appl. Phys. Lett.
96
,
263113
(
2010
).
35.
M.
Hu
,
X.
Zhang
, and
D.
Poulikakos
,
Phys. Rev. B
87
,
195417
(
2013
).
36.
X.
Zhang
,
M.
Hu
, and
D.
Tang
,
J. Appl. Phys.
113
,
194307
(
2013
).
37.
H.
Bao
,
X. L.
Ruan
, and
M.
Kaviany
,
Phys. Rev. B
78
,
125417
(
2008
).
38.
M.
Shen
,
P. K.
Schelling
, and
P.
Keblinski
,
Phys. Rev. B
88
,
045444
(
2013
).
39.
Shu-Wei
Chang
 et al,
J. Phys.: Condens. Matter
24
,
245301
(
2012
).
You do not currently have access to this content.