Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2 synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2 in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2 and pure Fe2O3 particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3 particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.

1.
S.
Laurent
,
D.
Forge
,
M.
Port
,
A.
Roch
,
C.
Robic
,
L. V.
Elst
, and
R. N.
Muller
,
Chem. Rev.
108
,
2064
(
2008
).
2.
D.
Li
,
W. Y.
Teoh
,
C.
Selomulya
,
R. C.
Woodward
,
R.
Amal
, and
B.
Rosche
,
Chem. Mater.
18
,
6403
(
2006
).
3.
A. H.
Lu
,
E. L.
Salabas
, and
F.
Schuth
,
Angew. Chem., Int. Ed.
46
,
1222
(
2007
).
4.
S.
Mornet
,
S.
Vasseur
,
F.
Grasset
, and
E.
Duguet
,
J. Mater. Chem.
14
,
2161
(
2004
).
5.
S.
Sandhiya
,
S. A.
Dkhar
, and
A.
Surendiran
,
Fundam. Clin. Pharmacol.
23
,
263
(
2009
).
6.
N. S.
Wigginton
,
K. L.
Haus
, and
M. F.
Hochella
,
J. Environ. Monit.
9
,
1306
(
2007
).
7.
G. A.
Sotiriou
,
WIREs Nanomed. Nanobiotechnol.
5
,
19
(
2013
).
8.
A.
Teleki
,
M.
Suter
,
P. R.
Kidambi
,
O.
Ergeneman
,
F.
Krumeich
,
B. J.
Nelson
, and
S. E.
Pratsinis
,
Chem. Mater.
21
,
2094
(
2009
).
9.
G. A.
Sotiriou
,
T.
Sannomiya
,
A.
Teleki
,
F.
Krumeich
,
J.
Vörös
, and
S. E.
Pratsinis
,
Adv. Funct. Mater.
20
,
4250
(
2010
).
10.
L.
Li
,
M. H.
Fan
,
R. C.
Brown
,
J. H.
Van Leeuwen
,
J. J.
Wang
,
W. H.
Wang
,
Y. H.
Song
, and
P. Y.
Zhang
,
Crit. Rev. Environ. Sci. Technol.
36
,
405
(
2006
).
11.
G. A.
Sotiriou
,
A. M.
Hirt
,
P. Y.
Lozach
,
A.
Teleki
,
F.
Krumeich
, and
S. E.
Pratsinis
,
Chem. Mater.
23
,
1985
(
2011
).
12.
L.
Néel
,
Ann. Geophys.
5
,
99
(
1949
).
13.
L.
Tauxe
,
T. A. T.
Mullender
, and
T.
Pick
,
J. Geophys. Res.
101
,
571
, doi: (
1996
).
14.
I. D.
Mayergoyz
,
IEEE Trans. Magn.
22
,
603
(
1986
).
15.
A. J.
Newell
,
Geochem. Geophsy. Geosyst.
6
,
Q05010
(
2005
).
16.
C. R.
Pike
,
Phys. Rev. B
68
,
104424
(
2003
).
17.
C. R.
Pike
,
A. P.
Roberts
, and
K. L.
Verosub
,
J. Appl. Phys.
85
,
6660
(
1999
).
18.
A. P.
Roberts
,
C. R.
Pike
, and
K. L.
Verosub
,
J. Geophys. Res.: Solid Earth
105
,
28461
(
2000
).
19.
A. P.
Roberts
,
Q. S.
Liu
,
C. J.
Rowan
,
L.
Chang
,
C.
Carvallo
,
J.
Torrent
, and
C. S.
Horng
,
J. Geophys. Res.: Solid Earth
111
,
B12S35
(
2006
).
20.
J. E.
Davies
,
O.
Hellwig
,
E. E.
Fullerton
,
M.
Winklhofer
,
R. D.
Shull
, and
K.
Liu
,
Appl. Phys. Lett.
95
,
022505
(
2009
).
21.
L.
Clime
,
B.
Le Drogoff
,
S.
Zhao
,
Z.
Zhang
, and
T.
Veres
,
Int. J. Nanotechnol.
5
,
1268
(
2008
).
22.
L.
Clime
,
T.
Veres
, and
A.
Yelon
,
J. Appl. Phys.
102
,
013903
(
2007
).
23.
C. B.
Rong
,
Y.
Zhang
,
M. J.
Kramer
, and
J. P.
Liu
,
Phys. Lett. A
375
,
1329
(
2011
).
24.
M.
Reufer
,
H.
Dietsch
,
U.
Gasser
,
B.
Grobety
,
A. M.
Hirt
,
V. K.
Malik
, and
P.
Schurtenberger
,
J. Phys.: Condens. Matter
23
,
065102
(
2011
).
25.
P. R.
Kidambi
,
J. P. E.
Cleeton
,
S. A.
Scott
,
J. S.
Dennis
, and
C. D.
Bohn
,
Energy Fuels
26
,
603
(
2012
).
26.
A.
Teleki
,
M. C.
Heine
,
F.
Krumeich
,
M. K.
Akhtar
, and
S. E.
Pratsinis
,
Langmuir
24
,
12553
(
2008
).
27.
R. J.
Harrison
and
J. M.
Feinberg
,
Geochem. Geophsy. Geosyst.
9
,
Q05016
(
2008
).
28.
R.
Strobel
and
S. E.
Pratsinis
,
J. Mater. Chem.
17
,
4743
(
2007
).
29.
D.
Li
,
W. Y.
Teoh
,
R. C.
Woodward
,
J. D.
Cashion
,
C.
Selomulya
, and
R.
Amal
,
J. Phys. Chem. C
113
,
12040
(
2009
).
30.
D.
Li
,
W. Y.
Teoh
,
P.
Munroe
,
C.
Selomulya
,
R. C.
Woodward
, and
R.
Amal
,
J. Mater. Chem.
17
,
4876
(
2007
).
31.
G. A.
Sotiriou
,
M. A.
Visbal-Onufrak
,
A.
Teleki
,
E. J.
Juan
,
A. M.
Hirt
,
S. E.
Pratsinis
, and
C.
Rinaldi
,
Chem. Mater.
25
,
4603
(
2013
).
32.
A.
Teleki
,
M. K.
Akhtar
, and
S. E.
Pratsinis
,
J. Mater. Chem.
18
,
3547
(
2008
).
33.
D. J.
Dunlop
and
Ö.
Özdemir
,
Rock Magnetism: Fundamentals and Frontiers
(
Cambridge University Press
,
Cambridge
,
1997
).
34.
I. M.
Obaidat
,
B.
Issa
, and
Y.
Haik
,
J. Nanosci. Nanotechnol.
11
,
3882
(
2011
).
35.
A. G.
Roca
,
J. F.
Marco
,
M. d. P.
Morales
, and
C. J.
Serna
,
J. Phys. Chem. C
111
,
18577
(
2007
).
36.
C. R.
Pike
,
A. P.
Roberts
, and
K. L.
Verosub
,
Geophys. J. Int.
145
,
721
(
2001
).
37.
H.
Gottfried
,
C.
Janzen
,
M.
Pridoehl
,
P.
Roth
,
B.
Trageser
, and
G.
Zimmermann
, U.S. patent 2003/0059603 A1 (
2003
).
You do not currently have access to this content.