In this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific heat power release. Both colloids are alike in terms of liquid carrier, surfactant and magnetic phase composition but differ on the nanoparticle structuring. The colloid displaying low specific dissipation consists of spaced magnetic nanoparticles of mean size around 4.8 nm inside a large chitosan particle of 52.5 nm. The one displaying high specific dissipation consists of clusters of magnetic nanoparticles of mean size around 9.7 nm inside a chitosan particle of 48.6 nm. The experimental evaluation of Néel and Brown relaxation times (∼10−10 s and 10−4 s, respectively) indicate that the nanoparticles in both colloids magnetically relax by Néel mechanism. The isothermal magnetization curves analysis for this mechanism show that the magnetic nanoparticles behave in the interacting superparamagnetic regime. The specific absorption rates were determined calorimetrically at 260 kHz and up to 52 kA/m and were well modeled within linear response theory using the anisotropy density energy retrieved from quasi-static magnetic measurement, validating their use to predict heating ability of a given polydispersed particle suspension. Our findings provide new insight in the validity of quasi-static magnetic characterization to analyze the high frequency behavior of polydispersed colloids within the framework of the linear response and Wohlfarth theories and indicate that dipolar interactions play a key role being their strength larger for the colloid displaying higher dissipation, i.e., improving the heating efficiency of the nanoparticles for magnetic fluid hyperthermia.

1.
N. R. K.
Gilchrist
,
R.
Medal
,
W. D.
Shorey
,
R. C.
Hanselman
,
J. C.
Parrott
, and
C. B.
Taylor
, “
Selective inductive heating of Limph
,”
Ann. Surg.
146
,
596
(
1957
).
2.
A.
Jordan
,
P.
Wust
,
R.
Scholz
,
B.
Tesche
,
H.
Fähling
,
T.
Mitrovics
,
T.
Vogl
,
J.
Cervós-Navarro
, and
R.
Felix
, “
Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro
,”
Int. J. Hyperthermia.
12
(
6
),
705
722
(
1996
).
3.
R.
Hergt
,
R.
Hiergeist
,
M.
Zeisberger
,
D.
Schüler
,
U.
Heyen
,
I.
Hilger
, and
W. A.
Kaiser
, “
Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy
,”
J. Magn. Magn. Mater.
293
,
80
86
(
2005
).
4.
M. V.
Avdeev
,
B.
Mucha
,
K.
Lamszus
,
V.
Ladislau
,
V. M.
Garamus
,
A. V.
Feoktystov
,
O.
Marinica
,
R.
Turcu
, and
R.
Willumeit
, “
Structure and in vitro biological testing of water-based ferrofluids stabilized by monocarboxylic acids
,”
Langmuir
26
(
11
),
8503
8509
(
2010
).
5.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Cambridge University Press
,
Cambridge, England
,
1985
).
6.
W.
Brullot
,
N. K.
Reddy
,
J.
Wouters
,
V. K.
Valev
,
B.
Goderis
,
J.
Vermant
, and
T.
Verbiest
, “
Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles
,”
J. Magn. Magn. Mater.
324
,
1919
1925
(
2012
).
7.
T. T.
Luong
,
T. P.
Ha
,
L. D.
Tran
,
M.
Hung Do
,
T.
Thu Mai
,
N.
Hong Pham
,
H.
Bich Thi Phan
,
G.
Ha Thi Pham
,
N.
My Thi Hoang
,
Q. T.
Nguyen
, and
P. X.
Nguyen
, “
Design of carboxylated Fe3O4/poly(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect
,”
Colloids Surf. A: Physicochem. Eng. Aspects
384
,
23
30
(
2011
).
8.
S.
Laurent
,
S.
Dutz
,
U. O.
Häfeli
, and
M.
Mahmoudi
, “
Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles
,”
Adv. Colloid Interface Sci.
166
,
8
23
(
2011
).
9.
M.
Jeun
,
S.
Bae
,
A.
Tomitaka
,
Y.
Takemura
,
K.
Ho Park
,
S.
Ha Paek
, and
K. W.
Chung
, “
Effects of particle dipole interaction on the ac magnetically induced heating characteristics of ferrite nanoparticles for hyperthermia
,”
Appl. Phys. Lett.
95
,
082501
(
2009
).
10.
A.
Urtizberea
,
E.
Natividad
,
A.
Arizaga
,
M.
Castro
, and
A.
Mediano
, “
Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations
,”
J. Phys. Chem. C
114
(
11
),
4916
4922
(
2010
).
11.
D.
Serantes
,
D.
Baldomir
,
C.
Martinez-Boubeta
,
K.
Simeonidis
,
M.
Angelakeris
,
E.
Natividad
,
M.
Castro
,
A.
Mediano
,
D.-X.
Chen
,
A.
Sanchez
,
L. I.
Balcells
, and
B.
Martínez
, “
Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles
,”
J. Appl. Phys.
108
,
073918
(
2010
).
12.
B.
Mehdaoui
,
R. P.
Tan
,
A.
Meffre
,
J.
Carrey
,
S.
Lachaize
,
B.
Chaudret
, and
M.
Respaud
, “
Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results
,”
Phys. Rev. B
87
,
174419
(
2013
).
13.
M. E.
de Sousa María
,
M. B.
Fernández van Raap
,
P. C.
Rivas
,
P.
Mendoza Zélis
,
P.
Girardin
,
G.
Pasquevich
,
J.
Alessandrini
,
D.
Muraca
, and
F. H.
Sánchez
, “
Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia
,”
J. Phys. Chem. C
117
(
10
),
5436
5445
(
2013
).
14.
R. E.
Rosensweig
, “
Heating magnetic fluid with alternating magnetic field
,”
J. Magn. Magn. Mater.
252
,
370
374
(
2002
).
15.
J.
Carrey
,
B.
Mehdaoui
, and
M.
Respaud
, “
Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
,”
J. Appl. Phys.
109
,
083921
(
2011
).
16.
Rare Earth Magnetism: Structures and Excitations
, edited by
J.
Jensen
and
A. R.
Mackintosh
(
Clarendon Press
,
Oxford
,
1991
), Chap. 3.
17.
E. C.
Stoner
and
E. P.
Wohlfarth
, “
A Mechanism of magnetic hysteresis in heterogeneous alloys
,”
Philos. Trans. Roy. Soc. A
240
,
599
642
(
1948
).
18.
J. L.
Dormann
,
L.
Bessais
, and
D.
Fiorani
, “
A dynamic study of small interacting particles: Superparamagnetic model and spin-glass laws
,”
J. Phys. C: Solid State Phys.
21
,
2015
(
1988
).
19.
E.
Lima
, Jr.
,
T. E.
Torres
,
L. M.
Rossi
,
H. R.
Rechenberg
,
T. S.
Berquo
,
A.
Ibarra
,
C.
Marquina
,
M. R.
Ibarra
, and
G. F.
Goya
, “
Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles
,”
J. Nanopart Res.
15
,
1654
(
2013
).
20.
P.
Mendoza Zélis
,
G. A.
Pasquevich
,
S. J.
Stewart
,
M. B.
Fernández van Raap
,
J.
Aphesteguy
,
I. J.
Bruvera
,
C.
Laborde
,
B.
Pianciola
,
S.
Jacobo
, and
F. H.
Sánchez
, “
Structural and magnetic study of zinc-doped magnetite nanoparticles and ferrofluids for hyperthermia applications
,”
J. Phys. D: Appl. Phys.
46
,
125006
(
2013
).
21.
J. P.
Fortin
,
F.
Gazeau
, and
C.
Wilhelm
, “
Intracellular heating of living cells through Neél relaxation of magnetic nanoparticles
,”
Eur. Biophys. J.
37
,
223
228
(
2008
).
22.
R.
Hergt
,
S.
Dutz
, and
M.
Roder
, “
Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia
,”
J. Phys.: Condens. Matter
20
,
385214
(
2008
).
23.
G.
Salas
,
C.
Casado
,
F. J.
Teran
,
R.
Miranda
,
C. J.
Serna
, and
M.
Puerto Morales
, “
Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications
,”
J. Mater. Chem.
22
,
21065
(
2012
).
24.
J.
Qu
,
G.
Liu
,
Y.
Wang
, and
R.
Hong
, “
Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia
,”
Adv. Powder Technol.
21
,
461
467
(
2010
).
25.
V.
Belessi
,
R.
Zboril
,
J.
Tucek
,
M.
Mashlan
,
V.
Tzitzios
, and
D.
Petridis
, “
Ferrofluids from magnetic-Chitosan hybrids
,”
Chem. Mater.
20
,
3298
3305
(
2008
).
26.
B.
Gaihre
,
M.
Seob Khil
,
D.
Rae Lee
, and
H.
Yong Kim
, “
Gelatin-coated magnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study
,”
Int. J. Pharam.
365
,
180
189
(
2009
).
27.
V.
Lassalle
and
M.
Ferreira
, “
Nano and microspheres based on Polylactide (PLA) polymers and copolymers: An overview of their characteristics as a function of the obtention method
,”
Macromol. Biosci.
7
,
767
783
(
2007
).
28.
P.
Nicolás
,
M.
Saleta
,
H.
Troiani
,
R.
Zysler
,
V.
Lassalle
, and
M. L.
Ferreira
, “
Preparation of iron oxides nanoparticles stabilized with biomolecules: Experimental and mechanism issues
,”
Acta Biomater.
9
(
1
)
4754
4762
(
2013
).
29.
P.
Li
,
A. M.
Zhu
,
Q. L.
Liu
, and
Q. G.
Zhang
, “
Fe3O4/poly(N-isopropylacrylamide)/ chitosan composite microspheres with multiresponsive properties
,”
Ind. Eng. Chem. Res.
47
,
7700
7706
(
2008
).
30.
T.
Freltoft
,
J. K.
Kjems
, and
S. K.
Sinha
, “
Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering
,”
Phys. Rev. B
33
,
269
275
(
1986
).
31.
S.
Chen
and
J.
Texeira
, “
Structure and fractal dimension of protein-detergent complexes
,”
Phys. Rev. Lett.
57
,
2583
2586
(
1986
).
32.
M. B.
Fernández van Raap
,
P.
Mendoza Zélis
,
D. F.
Coral
,
T. E.
Torres
,
C.
Marquina
,
G. F.
Goya
, and
F. H.
Sánchez
, “
Self organization in oleic acid coated CoFe2O4 colloids: A SAXS study
,”
J. Nanoparticle Res.
14
(
9
),
1072
1075
(
2012
).
33.
G.
Beaucage
, “
Approximations leading to a unified exponential/power-law approach to small-angle scattering
,”
J. Appl. Cryst.
28
,
717
728
(
1995
).
34.
J. S.
Micha
,
B.
Dieny
,
J. R.
Régnard
,
J. F.
Jacquot
, and
J.
Sort
, “
Estimation of the Co nanoparticles size by magnetic measurements in Co/SiO2 discontinuous multilayers
,”
J. Magn. Magn. Mater.
272–276
,
E967
E968
(
2004
).
35.
P.
Allia
,
M.
Coisson
,
P.
Tiberto
,
F.
Vinai
,
M.
Knobel
,
M. A.
Novak
, and
W. C.
Nunes
, “
Granular Cu-Co alloys as interacting superparamagnets
,”
Phys. Rev. B
64
(
14
),
144420
(
2001
).
36.
W. C.
Nunes
,
W. S. D.
Folly
,
J. P.
Sinnecker
, and
M. A.
Novak
, “
Temperature dependence of the coercive field in single-domain particle systems
,”
Phys. Rev. B
70
,
014419
(
2004
).
37.
K.
Gilmore
,
Y. U.
Idzerda
,
M. T.
Klem
,
M.
Allen
,
T.
Douglas
, and
M.
Young
, “
Surface contribution to the anisotropy energy of spherical magnetite particles
,”
J. Appl. Phys.
97
,
10B301
(
2005
).
38.
J. L.
Dormann
,
D.
Fiorani
, and
E.
Tronc
, “
On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results
,”
J. Magn. Magn. Mater.
202
,
251
267
(
1999
).
39.
P.
Hugounenq
,
M.
Levy
,
D.
Alloyeau
,
L.
Lartigue
,
E.
Dubois
,
V.
Cabuil
,
C.
Ricolleau
,
S.
Roux
,
C.
Wilhelm
,
F.
Gazeau
, and
R.
Bazzi
, “
Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia
,”
J. Phys. Chem. C
116
(
29
),
15702
15712
(
2012
).
40.
J. L.
Dormann
,
D.
Fiorani
, and
E.
Tronc
, “
Magnetic relaxation in fine-particle systems
,” in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S. A.
Rice
(
John Wiley & Sons, Inc.
,
Hoboken, NJ, USA
,
2007
), Vol. 98, Chap. 4, p.
339
.
41.
G.
Vallejo-Fernandez
,
O.
Whear
,
A. G.
Roca
,
S.
Hussain
,
J.
Timmis
,
V.
Patel
, and
K.
O'Grady
, “
Mechanisms of hyperthermia in magnetic nanoparticles
,”
J. Phys. D: Appl. Phys.
46
,
312001
(
2013
).
You do not currently have access to this content.