Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of TiNi1+xSn, with x between 0.00 and 0.25. Phases and microstructure were determined using synchrotron X-ray diffraction and optical and electron microscopy. The full-Heusler phase is observed to be semi-coherent with the half-Heusler majority phase. Differential thermal analysis was performed to determine melting temperatures of the end-member compounds. The thermal conductivity is reduced with the introduction of a dispersed, full-Heusler phase within the half-Heusler material. This leads to an increased thermoelectric figure of merit, ZT, from 0.35 for the stoichiometric compound to 0.44 for TiNi1.15Sn. Beyond x = 0.15 ZT decreases due to a rise in thermal conductivity. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as comparative energies of formation. The hybrid functional band structure of TiNiSn is presented as well.

1.
K.
Smith
and
M.
Thornton
, “
Feasibility of thermoelectrics for waste heat recovery in conventional vehicles
,” U.S. Department of Energy, Technical Report No. NREL/TP-540-44247,
2009
.
2.
M.
Zebarjadi
,
K.
Esfarjani
,
M. S.
Dresselhaus
,
Z. F.
Ren
, and
G.
Chen
,
Energy Environ. Sci.
5
,
5147
(
2012
).
3.
J. R.
Sootsman
,
D. Y.
Chung
, and
M. G.
Kanatzidis
,
Angew. Chem., Int. Ed.
48
,
8616
(
2009
).
4.
S.
Bhattacharya
,
T. M.
Tritt
,
Y.
Xia
,
V.
Ponnambalam
,
S. J.
Poon
, and
N.
Thadhani
,
Appl. Phys. Lett.
81
,
43
(
2002
).
5.
J. M.
Zide
,
D. O.
Klenov
,
S.
Stemmer
,
A. C.
Gossard
,
G.
Zeng
,
J. E.
Bowers
,
D.
Vashaee
, and
A.
Shakouri
,
Appl. Phys. Lett.
87
,
112102
(
2005
).
6.
X.
Lu
and
D. T.
Morelli
,
Phys. Chem. Chem. Phys.
15
,
5762
(
2013
).
7.
B.
Yu
,
M.
Zebarjadi
,
H.
Wang
,
K.
Lukas
,
H.
Wang
,
D.
Wang
,
C.
Opeil
,
M.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
12
,
2077
(
2012
).
8.
E. S.
Toberer
,
A.
Zevalkink
, and
G. J.
Snyder
,
J. Mater. Chem.
21
,
15843
(
2011
).
9.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C.-I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature Lett.
489
,
414
(
2012
).
10.
J. M. O.
Zide
,
J.-H.
Bahk
,
R.
Singh
,
M.
Zebarjadi
,
G.
Zeng
,
H.
Lu
,
J. P.
Feser
,
D.
Xu
,
S. L.
Singer
,
Z. X.
Bian
,
A.
Majumdar
,
J. E.
Bowers
,
A.
Shakouri
, and
A. C.
Gossard
,
J. Appl. Phys.
108
,
123702
(
2010
).
11.
S.-W.
Kim
,
Y.
Kimura
, and
Y.
Mishima
,
Intermetallics
15
,
349
(
2007
).
12.
H.
Hohl
,
A. P.
Ramirez
,
C.
Goldmann
,
G.
Ernst
,
B.
Wölfing
, and
E.
Bucher
,
J. Phys.: Condens. Matter
11
,
1697
(
1999
).
13.
M.
Zou
,
J.-F.
Li
,
B.
Du
,
D.
Liu
, and
T.
Kita
,
J. Solid State Chem.
182
,
3138
(
2009
).
14.
T.
Katayama
,
S.-W.
Kim
,
Y.
Kimura
, and
Y.
Mishima
,
J. Electron. Mater.
32
,
1160
(
2003
).
15.
Y. W.
Chai
and
Y.
Kimura
,
Appl. Phys. Lett.
100
,
033114
(
2012
).
16.
H.
Hazama
,
M.
Matsubara
,
R.
Asahi
, and
T.
Takeuchi
,
J. Appl. Phys.
110
,
063710
(
2011
).
17.
J. P. A.
Makongo
,
D. K.
Misra
,
X.
Zhou
,
A.
Pant
,
M. R.
Shabetai
,
X.
Su
,
C.
Uher
,
K. L.
Stokes
, and
P. F. P.
Poudeu
,
J. Am. Chem. Soc.
133
,
18843
(
2011
).
18.
R. A.
Downie
,
D. A.
MacLaren
,
R. I.
Smith
, and
J. W. G.
Bos
,
Chem. Commun.
49
,
4184
(
2013
).
19.
J. E.
Douglas
,
C. S.
Birkel
,
M.-S.
Miao
,
C. J.
Torbet
,
G. D.
Stucky
,
T. M.
Pollock
, and
R.
Seshadri
,
Appl. Phys. Lett.
101
,
183902
(
2012
).
20.
C. S.
Birkel
,
J. E.
Douglas
,
B. R.
Lettiere
,
G.
Seward
,
Y.
Zhang
,
T. M.
Pollock
,
R.
Seshadri
, and
G. D.
Stucky
,
Phys. Chem. Chem. Phys.
15
,
6990
6997
(
2013
).
21.
A.
Zevalkink
,
E. S.
Toberer
,
W. G.
Zeier
,
E.
Flage-Larsen
, and
G. J.
Snyder
,
Energy Environ. Sci.
4
,
510
(
2011
).
22.
C.
Yu
,
T.-J.
Zhu
,
R.-Z.
Shi
,
Y.
Zhang
,
X.-B.
Zhao
, and
J.
He
,
Acta Mater.
57
,
2757
(
2009
).
23.
Yu. V.
Stadnyk
and
R. V.
Skolozdra
,
Inorg. Mater.
27
(
10
),
1884
(
1991
).
24.
V. V.
Romaka
,
P.
Rogl
,
L.
Romaka
,
Yu.
Stadnyk
,
N.
Melnychenko
,
A.
Grytsiv
,
M.
Falmbigl
, and
N.
Skryabina
,
J. Solid State Chem.
197
,
103
(
2013
).
25.
A. A.
Coelho
, Topas Academic V4.1 Software, Coelho Software,
Brisbane, Australia
,
2007
.
26.
M. P.
Echlin
,
A.
Mottura
,
C. J.
Torbet
, and
T. M.
Pollock
,
Rev. Sci. Instrum.
83
,
023701
(
2012
).
27.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
28.
G.
Kresse
,
M.
Marsman
, and
J.
Furthmüller
, Vienna Ab-Initio Simulation Package: VASP the GUIDE,
2012
.
29.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
31.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
32.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
33.
M. C.
Flemings
,
Solidification Processing
(
McGraw-Hill
,
New York
,
1974
).
34.
D.-Y.
Jung
,
K.
Kurosaki
,
C.-E.
Kim
,
H.
Muta
, and
S.
Yamanaka
,
J. Alloys Compd.
489
,
328
(
2010
).
35.
H.
Okamoto
,
J. Phase Equilib. Diffus.
31
,
202
(
2010
).
36.
H.
Okamoto
,
J. Phase Equilib. Diffus.
29
,
297
(
2008
).
37.
K. P.
Gupta
,
J. Phase Equilib. Diffus.
20
,
441
(
1999
).
38.
C. S.
Birkel
,
W. G.
Zeier
,
J. E.
Douglas
,
B. R.
Lettiere
,
C. E.
Mills
,
G.
Seward
,
A.
Birkel
,
M. L.
Snedaker
,
Y.
Zhang
,
G. J.
Snyder
,
T. M.
Pollock
,
R.
Seshadri
, and
G. D.
Stucky
,
Chem. Mater.
24
,
2558
(
2012
).
39.
J.
Tobola
,
J.
Pierre
,
S.
Kaprzyk
,
R. V.
Skolozdra
, and
M. A.
Kouacou
,
J. Phys.: Condens. Matter
10
,
1013
(
1998
).
40.
R. D.
Cowan
,
J. Appl. Phys.
34
,
926
(
1963
).
41.
A. F.
May
,
E. S.
Toberer
,
A.
Saramat
, and
G. J.
Snyder
,
Phys. Rev. B
80
,
125205
(
2009
).
42.
A. F.
May
and
G. J.
Snyder
,
Thermoelectrics Handbook: Thermoelectrics and Its Energy Harvesting
(
CRC Press
,
2012
).
43.
H.
Xiao
,
J.
Tahir-Kheli
, and
W. A.
Goddard
,
J. Phys. Chem. Lett.
2
,
212
(
2011
).
44.
J. A.
Kurzman
,
M.-S.
Miao
, and
R.
Seshadri
,
J. Phys.: Condens. Matter
23
,
465501
(
2011
).
45.
H. C.
Kandpal
,
G. H.
Fecher
,
G.
Schönhense
, and
C.
Felser
,
Phys. Rev. B
73
,
094422
(
2006
).
46.
S.
Öğüt
and
K. M.
Rabe
,
Phys. Rev. B
51
,
10443
(
1995
).
47.
M.
Hichour
,
D.
Rached
,
R.
Khenata
,
M.
Rabah
,
M.
Merabet
,
A. H.
Reshak
,
S.
Bin Omran
, and
R.
Ahmed
,
J. Phys. Chem. Solids
73
,
975
(
2012
).
48.
K.
Miyamoto
,
A.
Kimura
,
K.
Sakamoto
,
M.
Ye
,
Y.
Cui
,
K.
Shimada
,
H.
Namatame
,
M.
Taniguchi
,
S.-I.
Fujimori
,
Y.
Saitoh
,
E.
Ikenaga
,
K.
Kobayashi
,
J.
Tadano
, and
T.
Kanomata
,
Appl. Phys. Express
1
,
081901
(
2008
).
50.
K.
Kirievsky
,
Y.
Gelbstein
, and
D.
Fuks
,
J. Solid State Chem.
203
,
247
(
2013
).
51.
J.
Tobola
,
J.
Pierre
,
S.
Kaprzyk
,
R.
Skolozdra
, and
M. A.
Kouacou
,
J. Magn. Magn. Mater.
159
,
192
(
1996
).
52.
T.
Tokunaga
,
K.
Hashima
,
H.
Ohtani
, and
M.
Hasebe
,
Mater. Trans., JIM
45
,
1507
(
2004
).
53.
H. S.
Liu
,
J.
Wang
, and
Z. P.
Jin
,
CALPHAD
28
,
363
(
2004
).
54.
C.
Colinet
,
J.-C.
Tedenac
, and
S. G.
Fries
,
CALPHAD
33
,
250
(
2009
).
55.
A. T.
Dinsdale
,
CALPHAD
15
,
317
425
(
1991
).
You do not currently have access to this content.