Because of the miniaturization of electronic devices, the reliability of electromigration has become a major concern when shrinking the solder dimensions in flip-chip joints. Fast reaction between solders and electrodes causes intermetallic compounds (IMCs) to form, which grow rapidly and occupy entire joints when solder volumes decrease. In this study, U-grooves were fabricated on Si chips as test vehicles. An electrode-solder-electrode sandwich structure was fabricated by using lithography and electroplating. Gaps exhibiting well-defined dimensions were filled with Sn3.5Ag solders. The gaps between the copper electrodes in the test sample were limited to less than 15 μm to simulate microbumps. The samples were stressed at various current densities at 100 °C, 125 °C, and 150 °C. The morphological changes of the IMCs were observed, and the dimensions of the IMCs were measured to determine the kinetic growth of IMCs. Therefore, this study focused on the influence of back stress caused by microstructural evolution in microbumps.

1.
K. N.
Tu
,
J. Appl. Phys.
94
,
5451
(
2003
).
2.
M. Y.
Guo
,
C. K.
Lin
,
C.
Chen
, and
K. N.
Tu
,
Intermetallics
29
,
155
(
2012
).
3.
J. H.
Ke
,
H. Y.
Chuang
,
W. L.
Shih
, and
C. R.
Kao
,
Acta Mater.
60
,
2082
(
2012
).
4.
M. H.
Jeong
,
J. W.
Kim
,
B. H.
Kwak
, and
Y. B.
Park
,
Microelectron. Eng.
89
,
50
(
2012
).
5.
M. H.
Jeong
,
G. T.
Lim
,
B. J.
Kim
,
K. W.
Lee
,
J. D.
Kim
,
Y. C.
Joo
, and
Y. B.
Park
,
J. Electron. Mater.
39
,
2368
(
2010
).
6.
A.
Munding
,
H.
Hubner
,
A.
Kaiser
,
S.
Penka
,
P.
Benkart
, and
E.
Kohn
, “
Cu/Sn solid–liquid interdiffusion bonding
,” in
Wafer Level 3D ICs Process Technology
, edited by
C. S.
Tan
,
R. J.
Gutmann
, and
L. R.
Reif
(
Springer US
,
2008
), p.
131
.
7.
J. F.
Li
,
P. A.
Agyakwa
, and
C. M.
Johnson
,
Acta Mater.
59
,
1198
(
2011
).
8.
F. Y.
Ouyang
,
H.
Hsu
,
Y. P.
Su
, and
T. C.
Chang
,
J. Appl. Phys.
112
,
023505
(
2012
).
9.
J. H.
Ke
,
T. L.
Yang
,
Y. S.
Lai
, and
C. R.
Kao
,
Acta Mater.
59
,
2462
(
2011
).
10.
C. Y.
Liu
,
L.
Ke
,
Y. C.
Chuang
, and
S. J.
Wang
,
J. Appl. Phys.
100
,
083702
(
2006
).
11.
I. A.
Blech
and
C.
Herring
,
Appl. Phys. Lett.
29
,
131
(
1976
).
12.
C. C.
Wei
and
C.
Chen
,
Appl. Phys. Lett.
88
,
182105
(
2006
).
13.
R.
Agarwal
,
S. E.
Ou
, and
K. N.
Tu
,
J. Appl. Phys.
100
,
024909
(
2006
).
14.
Y. C.
Hsu
,
D. C.
Chen
,
P. C.
Liu
, and
C.
Chen
,
J. Mater. Res.
20
,
2831
(
2005
).
15.
S.
Ou
and
K. N.
Tu
,
Electronic Components & Technology Conference Proceeding
(
2005
), p.
1445
.
16.
L.
Xu
,
J.
Pang
, and
K. N.
Tu
,
Appl. Phys. Lett.
89
,
221909
(
2006
).
17.
J. K.
Han
,
D.
Choi
,
M.
Fujiyoshi
,
N.
Chiwata
, and
K. N.
Tu
,
Acta Mater.
60
,
102
(
2012
).
18.
F. Y.
Ouyang
,
K.
Chen
,
K. N.
Tu
, and
Y. S.
Lai
,
Appl. Phys. Lett.
91
,
231919
(
2007
).
19.
K.
Chen
,
N.
Tamura
,
M.
Kunz
,
K. N.
Tu
, and
Y. S.
Lai
,
J. Appl. Phys.
106
,
023502
(
2009
).
20.
L. D.
Chen
,
M. L.
Huang
, and
S. M.
Zhou
,
J. Alloys Compd.
504
,
535
(
2010
).
21.
H.
Gan
and
K. N.
Tu
,
J. Appl. Phys.
97
,
063514
(
2005
).
22.
B.
Chao
,
S. H.
Chae
,
X.
Zhang
,
K. H.
Lu
,
J.
Im
, and
P. S.
Ho
,
Acta Mater.
55
,
2805
(
2007
).
23.
H. P. R.
Frederikse
,
R. J.
Fields
, and
A.
Feldman
,
J. Appl. Phys.
72
,
2879
(
1992
).
24.
T. C.
Chiu
and
K. L.
Lin
,
Intermetallics
17
,
1105
(
2009
).
25.
C. T.
Lu
,
Y. J.
Hu
,
Y. S.
Liu
,
T. S.
Huang
,
H. W.
Tseng
,
C. Y.
Chen
, and
C. Y.
Liu
,
ECS Solid State Lett.
1
,
73
(
2012
).
26.
Y. C.
Hsu
,
C. K.
Chou
,
P. C.
Liu
,
C.
Chen
, and
D. J.
Yao
,
J. Appl. Phys.
98
,
033523
(
2005
).
27.
D.
Chen
,
C. E.
Ho
, and
J. C.
Kuo
,
Mater. Lett.
65
,
1276
(
2011
).
28.
J.
Han
,
H.
Chen
, and
M.
Li
,
Acta Metall. Sin. (Engl. Lett.)
25
,
214
(
2012
); available on-line at http://www.amse.org.cn/.
29.
M. A.
Korhonen
,
P.
Borgesen
,
K. N.
Tu
, and
C. Y.
Li
,
J. Appl. Phys.
73
,
3790
(
1993
).
30.
J. S.
Kim
,
P. J.
Wang
, and
C. C.
Lee
,
IEEE Trans. Compon. Packag. Technol.
31
,
875
(
2008
).
31.
Q.
Fei
,
A.
Tong
, and
C.
Na
,
IEEE ICEPT-HDP Proceeding
(
2008
), p.
1
.
You do not currently have access to this content.